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Abstract
In this paper, we investigate the existence and stability of periodic orbits

of the p-periodic difference equation with delays xn = f(n− 1, xn−k). We show
that the periodic orbits of this equation depend on the periodic orbits of p
autonomous equations when p divides k. When p is not a divisor of k, the peri-
odic orbits depend on the periodic orbits of gcd(p, k) nonautonomous p

gcd(p,k) -
periodic difference equations. We give formulas for calculating the number of
different periodic orbits under certain conditions. In addition, when p and k
are relatively prime integers, we introduce what we call the pk-Sharkovsky’s
ordering of the positive integers, and extend Sharkovsky’s theorem to periodic
difference equations with delays. Finally, we characterize global stability and
show that the period of a globally asymptotically stable orbit must divide p.

1 Introduction

Autonomous (time-invariant) difference equations with delays of the general form

xn = f(xn−1, xn−2, · · · , xn−k) (1.1)

∗This work is part of the first author’s Ph.D. dissertation
†Corresponding author. E-mail: alsha1zm@cmich.edu
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have shown up prominently in the books of Kocic and Ladas [1993] and Elaydi [2005].
Such equations have been used to model biological populations in which year classes
may develop independently. In general, delay equations are heavily used as epidemic
models, neural network models, ecological models, economic models and then systems
with memory [Elaydi, 2005; Kocic & Ladas, 1993; Kon, 2005].

Recently, there has been a burst of research activities focusing on a special case of
Eq. (1.1), namely, the equation

xn = f(xn−k). (1.2)

A prototype of Eq. (1.2) is the popular fish model, the Beverton-Holt delay equation
[Kot, 2001; Beverton & Holt, 2004; Cushing & Henson, 2001, 2002; Elaydi & Sacker,
2005a, 2005b]

xn =
µKxn−k

K + (µ− 1)xn−k

, µ > 1, K > 0, n, k ∈ N. (1.3)

Here, µ is the intrinsic growth rate, K is the carrying capacity, and k is the delay time
period. One group of researchers, which includes, [Balibrea & Linro1, 2003; Liang,
2003; der Heiden & Liang, 2004; Diekman & van Gill, 2000] focused their attention
on the combinatorial structure of the periodic orbits of Eq. (1.2) and the extension of
Sharkovsky’s theorem. In another direction, several researchers turned their attention
to nonautonomous periodic difference equations of the form

xn+1 = fn(xn), n ∈ N, (1.4)

where fn+p = fn for all n ∈ N and some integer p ≥ 2 (see [Franke & Selgrade,
2003; Franke & Yakubu, 2005; Selgrade & Roberds, 2001; Henson, 2000]). In those
papers, the overriding consideration was to investigate populations with periodically
fluctuating habitat. However, the study of periodic difference equations received a
great deal of input by the publication of two conjectures by Cushing and Henson
[2001, 2002]. In a series of papers, Elaydi and Sacker [2005a, 2005b] not only proved
Cushing-Henson conjectures, but also laid the necessary machinery to study periodic
difference equations. This was followed by the papers of Kocic [2005] and Kon [2005]
who addressed the question of whether periodically fluctuating habitat would enhance
the growth of the population (resonance) or would have an adverse effect on its growth
(attenuance).

AlSharawi et al. [2006] focused, among other things, on the extension of Sharkovsky’s
theorem to the periodic difference equation (1.4). Moreover, they were able to de-
scribe the combinatorial structure of the periodic orbits of Eq. (1.4). In this paper,
we extend our work in [AlSharawi et al., 2006] to periodic difference equations with
delays of the form

xn+1 = fn−1(xn−k+1), fn+p = fn and xn ∈ X, for all n ∈ N, (1.5)

1The authors received the 2004 prize of best paper on difference equations by the International
Society of Difference Equations (ISDE).
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where X is a metric space, which will be restricted as needed, , x−k+1, x−k+2, . . . , x0

are initial conditions in X, k > 1, p > 1, and k, p ∈ N. In Sec. 2, we study the case
in which the period p of the system divides the delay k. Using the Möbius inversion
formula we provide a formula for counting the number of different periodic orbits of
a given minimal period. In Sec. 3, we extend the results of Sec. 2 to the case in
which p does not divide k. In Sec. 4 we provide an extension of Sharkovsky’s theorem
[Sharkovsky, 1964; Elaydi, 1996] to Eq. (1.5). Finally, in Sec. 5, we investigate the
stability of the periodic orbits of Eq. (1.5).

In the sequel, we use the following notations: Z+ denotes the set of positive integers
and N := Z+ ∪ {0}. gcd(p, k) and lcm (p, k) denote the greatest common divisor and
the least common multiple between p and k, respectively. A difference equation
xn+1 = f(n, xn) = fn(xn) is called p-periodic if p is the minimal positive integer
for which fn+p = fn for all n ∈ N. Similarly, a periodic orbit (geometric cycle)
{c0, c1, · · · , cr−1} is called r-cycle if r is the minimal period. For a function f(x),
f 2(x) = f(f(x)) and inductively, fm(x) = f(fm−1(x)). Finally, for our convenience,
we write fm mod p(x) simply as fm(x).

2 The Periodic Orbits When p Divides k

Throughout this section we assume p|k, i.e., k = mp for some m ∈ N. The orbit of
(1.5) will be denoted by

O+ (x−k+1, x−k+2, . . . , x0) = {x−k+1, x−k+2, . . . , x0, x1, x2, . . .} ,

and since p|k, it can be partitioned into the k suborbits

O+
i (x−k+i) =

{
xi+k(j−1) : j ∈ N}

, 1 ≤ i ≤ k,

where O+
i is the orbit associated with the autonomous difference equation

xi+kn = fi−1(xi+k(n−1)), n ∈ N. (2.1)

This shows that the periodic orbits of Eq. (1.5) depend on periodic orbits of the p
autonomous equations

xn+1 = fj(xn), n ∈ N, 0 ≤ j ≤ p− 1.

A way to visualize these orbits is provided by the following array, where the initial
elements x−k+1, . . . , x0 form the first row and subsequent rows are found by applying
the maps fj, 0 ≤ j ≤ p− 1.
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O+
0 (x−k+1) · · · O+

p (x−k+1+p) · · · O+
2p(x−k+1+2p) · · · O+

k−1(x0)

x−k+1 · · · x−k+1+p · · · x−k+1+2p · · · x0

↓ · · · ↓ · · · ↓ · · · ↓
f0(x−k+1) · · · fp−1(x−k+1+p) · · · fp−1(x−k+1+2p) · · · fp−1(x0)

↓ · · · ↓ · · · ↓ · · · ↓
f 2

0 (x−k+1) · · · f 2
p−1(x−k+1+p) · · · f 2

p−1(x−k+1+2p) · · · f 2
p−1(x0)

↓ · · · ↓ · · · ↓ · · · ↓
f 3

0 (x−k+1) · · · f 3
p−1(x−k+1+p) · · · f 3

p−1(x−k+1+2p) · · · f 3
p−1(x0)

↓ · · · ↓ · · · ↓ · · · ↓

The following two lemmas describe when Eq. (1.5) has a periodic orbit as well as
structural properties of the periodic orbit.

Lemma 2.1. Let k = mp. Then each of the following holds true.

(i) Equation (1.5) has a periodic orbit if and only if each autonomous equation
xn+1 = fj(xn), n ∈ N, 0 ≤ j ≤ p− 1, has a periodic orbit.

(ii) Suppose each autonomous equation xn+1 = fj(xn), n ∈ N, 0 ≤ j ≤ p − 1,
has m periodic orbits Sj, Sj+p, . . . , Sj+(m−1)p (not necessarily distinct) of min-
imal periods pj, pj+p, . . . , pj+(m−1)p, respectively. Then the initial conditions
(x−k+1, x−k+2, . . . , x0) ∈ S0 × S1 × · · · × Sk−1, provide a periodic orbit of Eq.
(1.5) of period lcm (p0, p1, . . . , pk−1) · k, not necessarily minimal.

Proof. Trivial.

Lemma 2.2. Suppose Cr = {c0, c1, . . . , cr−1} is an r-cycle of Eq. (1.5). Then each
of the following holds true.

(i) If r|k, then for each 0 ≤ i ≤ r − 1 the maps fi, fi+r, . . . , fi+k−r have the same
fixed point ci.

(ii) If r < k and d := gcd(r, k) 6= r, then for each 0 ≤ j ≤ d− 1,

Sj =
{

cj, cj+k, cj+2k, . . . , cj+( r
d
−1)k

}

is a cycle of period r
d

(not necessarily minimal) to each of the maps fj, fj+d, . . . , fj+k−d.

(iii) If r > k and d = gcd(r, k) 6= k, then for each 0 ≤ j ≤ d− 1,

Sj =
{

cj, cj+k mod r, cj+2k mod r, . . . , cj+( r
d
−1)k mod r

}

is a cycle of period r
d

(not necessarily minimal) to each of the maps fj, fj+d, . . . , fj+k−d.
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(iv) If r = mk, m > 1 then for each 0 ≤ j ≤ k − 1, Sj =
{
cj, cj+k, . . . , cj+(m−1)k

}
is

a cycle of period m to the map fj. Furthermore, if the minimal period of Sj is
pj, then m = lcm (p0, p1, . . . , pk−1).

Proof. The proof of (i) is trivial. To prove (ii) and (iii), observe that r
d
· k = 0 mod r,

then track the orbits O+(c0, . . . , ck−1 mod r) and O+(c0, . . . , ck−1) respectively. For
(iv), track the orbit O+(c0, c1, . . . , ck−1) and use Lemma 2.1.

We observe from Lemma 2.1 that periodic orbits of Eq. (1.5) are determined
by the cycles of each of the maps fj, 0 ≤ j ≤ p − 1. Therefore, suppose Sj ={
c0,j, c1,j, . . . , cpj−1,j

}
, 0 ≤ j ≤ k − 1 is a pj-cycle of the autonomous equation

xn+1 = fj(xn), n ∈ N. We assume throughout this section the initial conditions
(x−k+1, x−k+2, . . . , x0) ∈ S0×S1×· · ·×Sk−1. It is convenient to observe that the first
k · lcm (p0, p1, . . . , pk−1) points in the orbit O+(x−k+1, x−k+1, . . . , x0) of Eq. (1.5) can
be viewed as rows of q × k matrix, where q = lcm (p0, p1, . . . , pk−1). To see this we
write the iterates xn as

xik+j = f i+1
j−1(x−k+j) = ci+1,j−1, 1 ≤ j ≤ k, −1 ≤ i ≤ q − 2,

and so the matrix is

Oqk =




c0,0 c0,1 · · · c0,k

c1,0 c1,1 · · · c1,k
...

...
...

cp0−1,0 cp1−1,1 · · · cpk−1,k


 .

Two questions now arise in understanding the nature of the periodic orbits of Eq.
(1.5).

• What is the relation between the minimal periods pj and the minimal periods
of the associated cycles of Eq. (1.5)?

• What is the relation between the numbers pj, 0 ≤ j ≤ k − 1, and the total
number of associated distinct cycles of Eq. (1.5)?

We end this section with partial answers to these questions. The next lemma aids
in answering the first question. We make use of the following sets used in [AlSharawi
et al., 2006; AlSharawi, 2006].

Ak,q =
{
n ∈ Z+ : lcm (n, q) = kq

}
.

Lemma 2.3. For each 0 ≤ i ≤ k − 1, suppose Si = {c0,i, c1,i, . . . , c0,pi−1} is a
pi-cycle of the map fi. Let q = lcm (p0, p1, . . . , pk−1). Then each initial condition
(x−k+1, x−k+2, . . . , x0) ∈

∏k−1
k=0 Si produces an r-cycle, r ∈ Ak,q.
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Proof. By Lemma 2.1, (x−k+1, x−k+2, . . . , x0) ∈
∏k−1

k=0 Si produces a periodic orbit of
Eq. (1.5) with minimal period r with r|qk. We consider three cases.

(i) If r is a divisor of k, then Lemma 2.2 implies that each cycle Si is a fixed point.
Therefore q = 1 and since Ak,1 contains the divisors of k, r ∈ Ak,q.

(ii) If r is a multiple of k, then Lemma 2.2 implies r = qk ∈ Ak,q.

(iii) If gcd(r, k) = d 6∈ {r, k}, then Lemma 2.2 implies that each cycle Si has period
equals to r

d
. This tells us that pi| rd for all 0 ≤ i ≤ k − 1. Therefore q| r

d
, but

r
d

= lcm (r,k)
k

and consequently kq divides lcm (r, k). However, by Lemma 2.1,
r|kq, so lcm (r, k)|kq. Hence lcm (r, k) = kq, i.e., r ∈ Ak,q.

Note that this lemma does not assure that r ∈ Ak,q is a minimal period. The
following lemma will be needed to clarify the relations between the elements of the
sets Ak,q, as well as, to determine when r is a minimal period.

Lemma 2.4. Let r, r∗ ∈ Ak,q. Denote d∗ = gcd(r∗, k), d = gcd(r, k), and q =
lcm (p0, . . . , pk−1) for some positive integers p0, . . . , pk−1. Then each of the following
holds true.

(i) r∗ divides r if and only if d∗ divides d.

(ii) r∗ < r if and only if d∗ < d.

(iii) d = r
q
, and kq

r
= k

d
.

(iv) There exists a positive integer h such that k
d
h ≡ 1 mod q.

(v)
(

k
d

mod q
)
h ≡ 1 mod pi, for all 0 ≤ i ≤ d− 1.

Proof. The proofs of (i)–(iii) are trivial. (iv) follows from the fact that k
d

is in the
group of units, U(q), of the ring Zq. The proof of (v) follows from the following string
of equivalences. Let b = k

d
mod q. Then

k
d
≡ b mod q

k
d
h ≡ bh mod q

kh
d

≡ 1 mod q

0 ≡ bh− 1 mod q

bh ≡ 1 mod q

bh ≡ 1 mod pi, 0 ≤ i ≤ d− 1(
k
d

mod q
)
h ≡ 1 mod pi, 0 ≤ i ≤ d− 1.
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The next theorem provides a necessary and sufficient condition for the period r ∈
Ak,q to be minimal.

Theorem 2.1. Assume the conditions of Lemma 2.3 hold, and let r ∈ Ak,q, q > 1

and d = gcd(r, k). The initial vector (x−k+1, x−k+2, . . . , x0) ∈
∏k−1

i=0 Si produces an r-
cycle if and only if Si = Si+d = Si+2d = · · · = Si+( k

d
−1)d for all 0 ≤ i ≤ d− 1.

Proof. Suppose Si = Si+d = Si+2d = · · · = Si+( k
d
−1)d for all 0 ≤ i < d. The proof will

be complete by constructing an r-cycle. From (i) in Lemma 2.4, we have

Zq = {jh mod q : 0 ≤ j ≤ q − 1} = {0, 1, 2, . . . , q − 1} .

Assume that for any r∗ ∈ Ak,q, r∗ < r and d∗ = gcd(r∗, k), the condition Si = Si+d∗ =
· · · = Si+k−d∗ is not satisfied. Since r = qd, the construction is divided into two cases.

(i) r ≤ k, i.e., q ≤ k
d
.

Let y = h < q be the unique solution of k
d
·y = 1 mod q. Define the initial vector

(x−k+1, . . . , x0) ∈
∏k−1

i=0 Sk to be

x−k+1+id+j =

{
cih mod pj ,j, 0 ≤ i ≤ q − 1,
c(i mod q)h mod pj ,j, q ≤ i < k

d
,

for each 0 ≤ j ≤ d − 1. This initial condition provides an r-cycle. To see this,
let Eq. (1.5) act on the first d components of the given initial vector. Obviously,
this implies fi(c0,i) = c1,k, 0 ≤ i ≤ d− 1, which is the k

d
th d components of the

orbit. On the other hand, the k
d
th d components under periodic assumption are

x1+j = c( k
d

mod q)h mod pj ,j, 0 ≤ j ≤ d− 1.

However, by (ii) in Lemma 2.4,

x1+j = c( k
d

mod q)h mod pj ,j = c1,j, 0 ≤ j ≤ d− 1.

(ii) r > k.

Consider the initial vector (x−k+1, . . . , x0) ∈
∏k−1

i=0 Si to be, x−k+id+j = cih mod pj ,j,
0 ≤ j ≤ d−1 and 0 ≤ i < k

d
. As in part (i), all that is necessary is to check that

this initial condition preserves the orbit structure as in the matrix Oqk. From
the fact that k

d
∈ U(q), the initial vector provides a periodic orbit of minimal

period r = qd.

Second, assume there exists r∗ ∈ Akq, r∗ < r, r∗|r, and d = gcd(r∗, k) such that
the condition Si = Si+d∗ = · · · = Si+k−d∗ , is satisfied and suppose that r∗ is the
smallest such element. Then by Lemma 2.1, d∗|d. Now define the initial vector by
taking the first d∗ components to be x−k+1+j = c0,j, 0 ≤ j ≤ d∗ − 1 and consider
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that as a block. Then replicate this block d
d∗ times to obtain the first d components,

x−k+1+id∗+j = c0,j, 0 ≤ j ≤ d∗−1 and 0 ≤ i < d
d∗ . The proof is completed in the same

fashion as the first case.
The converse is a direct result of the given assumptions and Lemma 2.2.

The following corollary is a direct consequence of Theorem 2.1.

Corollary 2.1. For each 0 ≤ i ≤ k − 1, suppose Si is a pi-cycle of the map fi mod p,
0 ≤ i ≤ k − 1. Let q = lcm (p0, p1, . . . , pk−1), s1, s2, . . . , sm be distinct elements of
Ak,q\{kq}, and define di = gcd(si, k), 1 ≤ i ≤ m. If Si 6= Sdi

, for all 1 ≤ i ≤ m,

then each initial condition (x−k+1, x−k+2, . . . , x0) ∈
∏k−1

i=0 Si produces a qk-cycle of
Eq. (1.5). Furthermore, the total number of different periodic orbits provided by the

given initial conditions is
pp0p1 · · · pk−1

qk
.

Proof. Since Si 6≡ Sdi
for all 1 ≤ i ≤ m, then by Theorem 2.1, all produced pe-

riodic orbits are of minimal period qk. Now the jth component of the initial vector
(x−k+1, x−k+2, ..., x0) ∈

∏k−1
i=0 Si can be occupied by pj choices; however, since Si 6= Sdi

then for each given cycle there are exactly qk
p

phase shifts. Thus, the total number of

different periodic orbits provided by the given initial conditions is pp0p1...pk−1

qk
.

After the existence of r-cycles, r ∈ Ak,q, is assured by Theorem 2.1, the number of
different r-cycles generated by the given initial conditions remains to be decided. In
the case where S := Si = Sj, for all 0 ≤ i, j ≤ k− 1, even if some of the functions fi,
0 ≤ i ≤ k − 1 are different, the restrictions on S can be treated as an autonomous
system. This has been extensively studied in [der Heiden & Liang, 2004; Diekmann
& van Gill, 2000; Liang 2003]. We focus on the general case where the sets Si,
0 ≤ i ≤ k − 1, are not all equal.

Let r ∈ Ak,q and define

B(r) := {r∗ ∈ Ak,q : r∗|r}, B∗(r) := B(r)\{r}. Then B(r) = A r
q
,q.

Also, denote by P (r) the number of distinct r-cycles provided by the initial con-
ditions (x−k+1, x−k+2, . . . , x0) ∈

∏k
i=0 Si. If the condition Si = Si+d = · · ·Si+k−d,

d = gcd(r, k), ∀i, 0 ≤ i ≤ d − 1, is not satisfied, then P (r) = 0. Otherwise we a give
a recurrence formula of P (r) in the following theorem.

Theorem 2.2. For each 0 ≤ i ≤ k − 1, suppose Si is a pi-cycle of the map fi. Let
q = lcm (p0, p1, ..., pk−1), r ∈ Ak,q, and d := gcd(r, k). If Si = Si+d = ... = Si+k−d,

0 ≤ i < d, then (x−k+1, x−k+2, ..., x0) ∈
∏k−1

i=0 Si provide P (r) different r-cycles of Eq.
(1.5), where

P (r) =
1

r


min{p, d̃}p0p1...pd−1 −

∑

j∈B∗(r)
jP (j)


 , (2.2)

and d̃ is the smallest divisor of k for which Si = Si+d̃ = ... = Si+k−d̃, 0 ≤ i < d̃ holds
true.
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Proof. By Theorem 2.1 there exists an r-cycle of Eq. (1.5) provided by the given
initial conditions. Consider r∗ to be the smallest divisor of r in Ak,q, in which d∗ :=
gcd(r∗, k) satisfy Si = Si+d∗ = ... = Si+k−d∗ , then d̃ divides d∗. By Lemma 2.4, d∗

divides d. If j ∈ B(r) and for all 0 ≤ i < dj, Si = Si+dj
= ... = Si+k−dj

, where
dj := gcd(j, k), then Theorem 2.1 assures the existence of a j-cycle, while if j ∈ B(r)
and Si = Si+dj

= ... = Si+k−dj
is not satisfied then the given initial condition does not

produce any j-cycles, i.e., P (j) = 0. Now the total number of periodic solutions of
minimal periods in B(r) is given by the total choices of fixing the first d components
of the initial vector (x−k+1, ..., x0) ∈

∏k−1
i=0 Si, which can be done in p0p1...pd−1 choices.

On the other hand, each j-cycle, j ∈ B(r), has j

min{p,d̃} phase shifts. Thus

p0p1...pd−1 =
r

min{p, d̃}P (r) +
∑

j∈B∗(r)

j

min{p, d̃}P (j)

implies

P (r) =
1

r


min{p, d̃}p0p1...pd−1 −

∑

j∈B∗(r)
jP (j)


 .

The following corollary is immediate from Theorem 2.2.

Corollary 2.2. For each 0 ≤ i ≤ k − 1, suppose Si is a pi-cycle of the map fi. Let
q = lcm (p0, p1, ..., pk−1), r ∈ Ak,q, and d := gcd(r, k). If j = d is the smallest divisor

of k so that Si = Si+j = ... = Si+k−j, 0 ≤ i < j, then (x−k+1, x−k+2, ..., x0) ∈
∏k−1

i=0 Si

provide p0p1...pd−1

max{q, r
p
} different r-cycles of Eq. (1.5).

To give a more friendly version of formula (2.2), we need the Möbius µ-function and
a special version of the Möbius inversion formula [van Lint & Wilson, 2001; Diekmann
& van Gill, 2000].

Lemma 2.5. Define A∗
k,q = { r

q
: r ∈ Ak,q}. Let G and g be two functions defined on

Z+ for which

G(k) =
∑

j∈A∗k,q

g(j).

Then

g(k) =
∑

j∈A∗k,q

µ

(
k

j

)
G(j),

where µ(k) is the Möbius µ-function.

Proof. Observe that A∗
k,q = {j|k : gcd(k

j
, q) = 1}, and refer to Lemma 3.4 in [Diek-

mann & van Gill, 2000].
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Now, we give the friendly version of formula (2.2) in the following corollary.

Corollary 2.3. Formula (2.2) in Theorem 2.2 can be written as

P (r) =
min{p, d̃}

r

∑
j∈A r

q ,q

d̃|j

µ

(
r

j

)
p0p1 · · · p j

q
−1. (2.3)

Proof. Formula (2.2) is equivalent to

p0p1 · · · pd−1 =
∑

j∈A r
q ,q

j

min{p, d̃}P (j) =
∑

j∈A∗r
q ,q

qj

min{p, d̃}P (qj).

Recall that P (r) = 0 when the condition Si = Si+d = · · · = Si+k−d, d = gcd(r, k),
∀i, 0 ≤ i ≤ d− 1, is not satisfied. Take that into consideration and invoke Lemma 2.5
to obtain

P (r) =
min{p, d̃}

r

∑

j∈A∗r
q ,q

d̃|j

µ

(
r/q

j

)
p0p1 · · · pj−1 =

min{p, d̃}
r

∑
j∈A r

q ,q

d̃|j

µ

(
r

j

)
p0p1 · · · p j

q
−1.

To clarify our developed theory, we give the following example:

Example 2.1. Suppose k = 360 = 23325, and define

f18j(x) = −1

2
(3x + 1)(x− 1) + j

3∑
j=0

(x− i), 0 ≤ j < 20

f18j+i(x) = (2− x)i + j(x− 1), 1 ≤ i < 18, 0 ≤ j < 20.

Observe the 3-cycles S18j = {0, 1, 2}, for all j, 0 ≤ j < 20, and the 1-cycles S18j+i =
{1}, 1 ≤ i < 18, 0 ≤ j < 20. Thus Si = Si+18 = · · · = Si+342, 0 ≤ i ≤ 17 and
q = lcm (3, 1) = 3. In this case

A360,3 = 3 · 32 · {1, 2, 4, 5, 8, 10, 20, 40} = {27, 54, 108, 135, 216, 270, 540, 1080},
and d̃ = 18 divides r = 54, 108, 216, 270, 540, 1080. Therefore

A18,3 = 3 · 32 · {1, 2}
A36,3 = 3 · 32 · {1, 2, 4}
A72,3 = 3 · 32 · {1, 2, 4, 8}
A90,3 = 3 · 32 · {1, 2, 5, 10}
A180,3 = 3 · 32 · {1, 2, 4, 5, 10, 20}.
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Now, we calculate the values of P (r).

P (54) =
18

54

∑
j∈A18,3

d̃|j

µ

(
54

j

)
p0p1 · · · p j

3
−1

=
1

3
(µ(1)p0 · · · p17) = 1.

P (108) =
18

108

∑
j∈A36,3

d̃|j

µ

(
108

j

)
p0p1 · · · p j

3
−1

=
1

6
(µ(2)p0 · · · p17 + µ(1)p0 · · · p35)

=
1

6
(−3 + 32) = 1.

P (216) =
18

216

∑
j∈A72,3

d̃|j

µ

(
216

j

)
p0p1 · · · p j

3
−1

=
1

12

(
µ(22)p0 · · · p17 + µ(2)p0 · · · p35 + µ(1)p0 · · · p71

)

=
1

12
(0− 32 + 34) = 6.

Similarly,
P (270) = 16, P (540) = 1960, and P (1080) = 58112088.

We close this section by an example on the Ricker model [Ricker, 1954].

Example 2.2. Consider the well-known Ricker equation

xn+1 = xner−xn , n ≥ 0, r > 0. (2.4)

In a periodically fluctuating environment [Franke & Yakubu, 2005], Eq. (2.4) becomes

xn+1 = xne
rn−xn , n ≥ 0, rn+p = rn > 0. (2.5)

Now, by introducing time delay, k > 0 in Eq. (2.5), we obtain

xn+1 = xn−ke
rn−xn−k , n ≥ 0, rn+p = rn > 0, k > 0. (2.6)

11



To keep our example simple, we fix

p = 3, k = 9, r0 = 1, r1 = 3, and r2 = 1.

f0(x) = f1(x) = xe1−x have x = 0 and x = 1 as fixed points. f1(x) = xe3−x has a
2-cycle

{a, b} ≈ {0.42432109, 5.57567891}.
Let the initial conditions (x−8, x−7, . . . , x0) ∈ S0 × S1 × · · · × S8, where

S0 = {0}, S1 = {a, b}, S2 = {1}, S3 = S6 = S0, S4 = S7 = S1, S5 = S8 = S2.

So
d̃ = 3, q = lcm (1, 2, 1) = 2, and A9,2 = 2 · {1, 3, 9} = {2, 6, 18}.

By Corollary 2.2, we have exactly one 6-cycle, namely {0, a, 1, 0, b, 1} and it can
be obtained by the initial condition (0, a, 1, 0, b, 1, 0, a, 1). Also, we obtain P (18) 18-
cycles, from formula (2.3)

P (18) =
3

18

∑
j∈A9,2

3|j

µ

(
18

j

)
p0p1 · · · p j

2
−1

=
1

6

∑

j∈{6,18}
µ

(
18

j

)
p0p1 · · · p j

2
−1

=
1

6
[2µ(3) + 8µ(1)]

=
1

6
[−2 + 8] = 1.

Indeed, the 18-cycle is

{0, a, 1, 0, a, 1, 0, a, 1, 0, b, 1, 0, b, 1, 0, b, 1}

and it can be obtained by the initial condition (0, a, 1, 0, a, 1, 0, a, 1).

3 The Periodic Orbits When p Does not Divide k

In this section we assume p is not a divisor of the delay k, and we let d̂ := gcd(k, p).
In this case, each orbit O+(x−k+1, x−k+2, . . . , x0) = {x−k+1, . . . , x0, x1, x2, . . .}, of Eq.
(1.5) can be partitioned into k-suborbits

O+
j (xj) = {xj, xj+k, xj+2k, . . .}, −k + 1 ≤ j ≤ 0,

12



where O+
j (xj) is associated with the nonautonomous p

d̂
-periodic difference equation

xk(n+1)+j = fk(n+1)+j−1(xkn+j), n ∈ N. (3.1)

Denote by Gf the set of functions {f0, f1, . . . , fp−1}, with the operation ? defined as

fi ? fj = fi+j, 0 ≤ i, j < p.

Then (Gf , ?) is a group that is isomorphic to (Zp, +) (integers mod p under addition).
For j = −k + 1, the maps in Eq. (3.1) are Hf := {f0, fk, f2k, ..., f p

d̂
k}, and (Hf , ?) is

a cyclic subgroup of (Gf , ?). Thus at j = −k + 2, the maps in Eq. (3.1) contribute
to the coset f1 ? Hf . At j = −k + 3, the maps contribute to the coset f2 ? Hf , and so
forth. Since the cyclic subgroup Hf has p

d̂
elements, then by Lagrange’s theorem, the

quotient group Gf/Hf has d̂ elements. Hence, in Eqs. (3.1), the first d̂ equations are

different, i.e., xkn+j+1 = fkn+j(xk(n−1)+j+1), n ∈ N, j = 0, 1, ..., d̂ − 1, are different,

while the next k − d̂ equations are time shifts. In fact we can consider the last k − d̂
equations repetitions of the first d̂ equations.

As in the previous section, the orbitO+(x−k+1, x−k+2, . . . , x0), the suborbitsO+(xj),
and the k Eqs. in (3.1) are visualized using the following diagram.

x−k+1 x−k+2 ... x−1 x0

↓ ↓ ... ↓ ↓
f0(x−k+1) f1(x−k+2) ... fk−2(x−1) fk−1(x0)

↓ ↓ ... ↓ ↓
fkf0(x−k+1) fk+1f1(x−k+2) ... f2k−2fk−2(x−1) f2k−1fk−1(x0)

↓ ↓ ... ↓ ↓
...

... ...
...

...,

(3.2)

From (3.2) we have the following lemma that is analogous to Lemma 2.1. The proof
is similar.

Lemma 3.1. Each of the following holds true:

(i) Equation (1.5) has a periodic orbit if and only if for each j = 0, 1, ..., k−1, the p

d̂
-

periodic difference equation xkn+j+1 = fkn+j(xk(n−1)+j+1), n ∈ N, has a periodic
orbit.

(ii) Suppose each equation xkn+j+1 = fkn+j(xk(n−1)+j+1), n ∈ N, 0 ≤ j < k, has a

pj-cycle Sj. Then the initial condition (x−k+1, x−k+2, ..., x0) ∈
∏k−1

i=0 Si of Eq.
(1.5) provides either no periodic orbit, or a periodic orbit of minimal period
r ∈ Ak,q, where q = lcm (p0, p1, ..., pk−1).

Next, assume each equation xkn+j+1 = fkn+j(xk(n−1)+j+1), n ∈ N, 0 ≤ j < k, has
a pj-cycle Sj := {c0,j, c1,j, ..., cpj−1,j}, and let dj = gcd(pj,

p

d̂
). Here, we stress that we
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are considering the value of j as the reference time for the jth equation. From the
combinatorial structure of geometric cycles [AlSharawi et al., 2006; AlSharawi, 2006],
we define the non-ordered sets

S∗j := {c0,j, cdj ,j, c2dj ,j, ..., cpj−dj−1,j}, 0 ≤ j < k, (3.3)

and hence, the initial conditions

(x−k+1, x−k+2, ..., x0) ∈
k−1∏
i=0

S∗i (3.4)

are the right candidates to provide periodic orbits of Eq. (1.5). Thus, we focus
on these initial conditions. As in the previous section, we find the total number of
periodic orbits and the minimal periods. The next theorem gives conditions about
the existence of periodic orbits, although not necessarily minimal. The proof of which
is similar to that of Theorem 2.1.

Theorem 3.1. For each 0 ≤ j < k, suppose Sj := {c0,j, c1,j, ..., cpj−1,j} is a pj-
cycle of the p

d̂
-periodic difference equation xkn+j+1 = fkn+j(xk(n−1)+j+1). Let q =

lcm (p0, p1, ..., pk−1), S∗j , 0 ≤ j < k be defined as in Eq. (3.3), r ∈ Ak,q, d =

gcd(r, k), and h ≤ q the unique solution of k
d
h = 1 mod q. Then the initial condition

(x−k+1, ..., x0) ∈
∏k−1

i=0 S∗i provides an r-cycle if and only if

c0,id+j = cih mod q,j, 1 ≤ i <
k

d
, 0 ≤ j ≤ d− 1. (3.5)

There are two concerns raised by this theorem. First, when do the conditions hold
and second, when is the period minimal? In the case of fixed points, i.e., fi(x

∗) = x∗,
for all 0 ≤ i ≤ p − 1. A periodic orbit Cr = {c0, c1, . . . , cr−1} of minimal period
r ∈ Ak,1 exists if and only if f k

r
i+jk(ci) = ci, for all 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ p

d̂
− 1.

We stress this case in the following remark.

Remark 3.1. Suppose S0 = S1 = ... = Sk−1 = {x∗}, then (x−k+1, ..., x0) ∈
∏k−1

i=0 S∗i
provides one fixed point of Eq. (1.5). If S0, ..., Sk−1 are allowed to take any one of
two fixed points {x∗}, {y∗}, then Eq. (1.5) has r-cycles for all r ∈ Ak,1.

Next, assume q = lcm (p0, p1, . . . , pk−1) > 1. Then condition (3.5) is a very strong
condition; nevertheless, we can weaken this condition by restricting the relation be-
tween the period p and the delay k.

Theorem 3.2. Suppose p and k are relatively prime, and let S0 := {c0, c1, ..., cq−1}
be a q-cycle of minimal period q 6∈ Ap,1, of the p-periodic difference equation xkn+1 =
fkn(xk(n−1)+1), n ∈ N. For each 0 < i < k, define Si := {ci, ci+1, ..., c0, .., ci−1}. Then

for all r ∈ Ak,q, the initial conditions (x−k+1, ..., x0) ∈
∏k−1

i=0 S∗i provide an r-cycle.
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Furthermore, the number of different r-cycles provided by those initial conditions is
given by

P (r) =
1

r

∑

j∈B(r)

µ

(
r

j

)
d∗gcd(j,k)+1, where d∗ = gcd(p, q).

Proof. Let r ∈ Ak,q, and d := gcd(r, k). We show condition (3.5) of Theorem 3.1 is
satisfied. First, observe from the structure of Sj’s that for each 0 ≤ j ≤ k − 1, Sj is
a q-cycle of the jth equation in (3.1). Next, divide the initial condition (x−k+1, ..., x0)
into k

d
blocks, and occupy the first block by (ci, c1+i, . . . , cd−1+i mod q) for some i =

0, d∗, ..., q−d∗. Without loss of generality, say (c0, c1, ..., cd−1 mod q). To have condition
(3.5) satisfied, we need the second block to be (ch, ch+1, ..., cd−1+h mod q); however, we
also need this block to be in S∗d × S∗d+1 × . . . × S∗2d−1. Define the non-ordered set
G := {c0, c1, ..., cq−1}, and define the operation ? on G as follows

ci ? cj = ci+j mod q, 0 ≤ i, j < q.

Then (G, ?) is a group, isomorphic to (Zq, +). (S∗0 , ?) is a cyclic subgroup of (G, ?),
while S∗0 , S

∗
1 , ..., S

∗
d∗−1 are the d∗ different cosets (equivalence classes). Also, recall the

group of maps (Gf , ?), and consider the cyclic subgroup Hf := {f0, fd∗ , ..., fp−d∗}.
Each element of the coset fj ? Hf , 0 ≤ j < d∗ maps the coset S∗j onto the coset
S∗j+1 mod d∗ . Since

fhk ? Hf = f(h k
d
d) ? Hf

= f(h k
d
−1+1)d ? Hf ,

k
d
h = 1 mod q

= f(m1q+1)d ? Hf , write hk
d
− 1 = m1q

= (fm1qd ? Hf ) ? (fd ? Hf )
= Hf ? (fd ? Hf ) m1qd is a multiple of d∗

= fd ? Hf ,

then fhk and fd are in the same coset. From the fact G/S∗0 and Gf/Hf are isomorphic,
fhk and fd are in the same coset if and only if

ch ∈ S∗d ⇔ ch+j mod q ∈ S∗d+j mod d∗ ⇔ cih+j mod q ∈ S∗id+j mod d∗ .

Now, we show the initial condition can be chosen so that r is a minimal pe-
riod. If r 6= minAk,q, write all elements of Ak,q that divide r in ascending order
as r0, r1, ..., rm = r, and define di = gcd(ri, k), 0 ≤ i ≤ m. The above argument
assures the existence of an r0-cycle. Fix such a cycle and consider

(

d0 block︷ ︸︸ ︷
x−k+1, . . . , x−k+d0 ,

d0 block︷ ︸︸ ︷
x−k+d0+1, . . . , x−k+2d0 , . . . ,

d0 block︷ ︸︸ ︷
x−d0 , . . . , x0).

as the associated initial condition. Next, since r0 < r1, then by Lemma 2.4, d0 < d1.
Keep the first d1 − 1 components x−k+1, ..., x−k+d1−1 fixed as they are, and change
the x−k+d1 component by another component from S∗d1−1 \ {x−k+d1}. This is always

15



possible, since q 6∈ Ap,1, and consequently S∗d1−1 has more than one element. Then
choose the next k−d1 components so that condition (3.5) of Theorem 3.1 is satisfied.
This constructed initial condition provides an r1-cycle. Similarly, we construct initial
conditions that provide ri-cycles, i = 2, 3, · · · ,m.

Finally, we are ready to prove the count formula. Since S∗0 contributes to the
creation of d∗ cosets, then each existed r-cycle has r

d∗ phase shifts. Also, if r1 divides

r then an r1-cycle is of period r, and the initial condition can be occupied in d∗gcd(r,k)

choices. Therefore,

d∗gcd(r,k) =
∑

j∈B(r)

j

d∗
P (j).

Apply Möbius inversion formula to obtain

r

d∗
P (r) =

∑

j∈B(r)

µ

(
r

j

)
d∗gcd(j,k),

and hence

P (r) =
1

r

∑

j∈B(r)

µ

(
r

j

)
d∗gcd(j,k)+1.

4 Sharkovsky’s Theorem for Periodic Difference

Equations With Delays

An extension of Sharkovsky’s theorem to p-periodic difference equations is given in
[AlSharawi et al., 2006]. In this section, we generalize Sharkovsky’s theorem to peri-
odic difference equations with delays, particularly, when the period p and the delay
k are relatively prime. To achieve this objective, we introduce what we call the
pk-Sharkovsky’s ordering of the positive integers, which in fact depends on the p-
Sharkovsky’s ordering given in [AlSharawi et al., 2006]. The pk-Sharkovsky’s ordering
is given by

Apk,3 ¤Apk,5 ¤Apk,7 ¤ · · ·
Apk,2·3 ¤Apk,2·5 ¤Apk,2·7 ¤ · · ·
...
Apk,2n·3 ¤Apk,2n·5 ¤Apk,2n·7 ¤ · · ·
...
¤Apk,2n ¤ · · ·¤Apk,22 ¤Apk,2 ¤Apk,1.

It is easy to check that this ordering is well defined.
Before we give the natural extension of Sharkovsky’s theorem to periodic difference

equations with delays, the following lemma is needed.
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Lemma 4.1. Given relatively prime positive integers p and k, then

∪q∈Ap,rAk,q = Apk,r.

Proof. Let p and k be relatively prime positive integers, and fix r ∈ Z+. Factor p, k
and r as

k = kα0
0 kα1

1 · · · kαm1
m1 , p = pβ0

0 pβ1

1 · · · pβm2
m2 , r = k

α∗0
0 · · · kα∗t1

t1 p
β∗0
0 · · · pβ∗t2

t2 rγ0

0 rγ1

1 · · · rγm3
m3 ,

where k0, . . . , km1 are the distinct prime factors of k, p0, . . . , pm2 are the distinct prime
factors of p, and r0, . . . , rm3 are the distinct prime factors of r that are not in common
with neither k nor p. Observe that

Apk,r = rkα0
0 kα1

1 · · · kαt1
t1 pβ0

0 · · · pβt2
t2

{
M1M2 : M1|kαt1+1

t1+1 · · · kαm1
m1 , M2|pβt2+1

t2+1 · · · pβm2
m2

}

and
Ap,r = rpβ0

0 · · · pβt2
t2

{
M2 : M2|pβt2+1

t2+1 · · · pβm2
m2

}
.

Let q ∈ Ap,r, then q = rpβ0

0 · · · pβt2
t2 M2 for some fixed M2. Now

Ak,q = rkα0
0 kα1

1 · · · kαt1
t1 pβ0

0 · · · pβt2
t2

{
M1M2 : M1|kαt1+1

t1+1 k
αt1+2

t1+2 · · · kαm1
m1

}
.

Hence
∪q∈Ap,rAk,q = Apk,r.

Theorem 4.1 (Sharkovsky’s theorem for periodic difference equations with
delays). Let p and k be relatively prime positive integers. Suppose fi : I → I are
continuous on a closed interval I, and suppose the p-periodic difference equation
xk(n+1) = fk(n+1)−1(xkn), n ∈ N, has an r-cycle. Let ` := lcm (p,r)

p
. Then each set

Akp,q, such that Akp,` ¤Akp,q, q 6= 1, contains a subset Ak,qm for some m, m|p, and
each element r∗ ∈ Ak,qm is a period of a cycle of xn = fn−1(xn−k). Furthermore, if
xk(n+1) = fk(n+1)−1(xkn) has two fixed points, then the previous statement holds true
for all Akp,q ¤Akp,`.

Proof. Suppose xk(n+1) = fk(n+1)−1(xnk) has an r-cycle. By Sharkovsky’s theorem for
periodic difference equations, each set Ap,q, such that Ap,` ¥ Ap,q, contains a period
of some geometric cycle of xk(n+1) = fk(n+1)−1(xkn), say q∗ ∈ Ap,q; moreover, q∗ = qm
for some positive integer m, m|p. By Theorem 3.2, this q∗-cycle assures the existence
of r-cycles of Eq. (1.5) for all r ∈ Ak,q∗ , whenever q∗ 6= 1. To this end, we have
verified that each collection

∪q̂∈Ap,qAk,q̂, Ap,` ¥Ap,q

contains a set Ak,q∗ , q∗ = qm 6= 1, and m|p such that each element r∗ ∈ Ak,q∗ is the
minimal period of a cycle of xn = fn−1 mod p(xn−k). But by Lemma 4.1, ∪q∈Ap,rAk,q =
Apk,r. Finally, the last statement follows from Remark 3.1
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Observe that when k = 1, Theorem 4.1 reduces to the extension in [AlSharawi et
al., 2006], and when p = 1, it reduces to the extension given in [der Heiden & Liang,
2004] . Finally if p = k = 1 then it reduces to the original Sharkovsky’s Theorem.
Using Theorem 20 in [AlSharawi et al., 2006] we obtain the converse of Sharkovsky’s
theorem for periodic difference equations with delays as given in the next corollary.

Corollary 4.1. Given positive integers r, k, and p, such that gcd(k, p) = 1. Define

` := lcm (r,p)
p

. There exists a periodic difference equation xn+1 = fn mod p(xn−k) that
has an r-cycle, but has no r∗-cycles for all r∗ ∈ Akp,q ¤Akp,`.

Finally, we use the classical logistic model [May, 1976] to illustrate our theory in
this section.

Example 4.1. Consider the logistic model

xn+1 = µxn(1− xn), µ ∈ [0, 4], xn ∈ [0, 1] and n ≥ 0 (4.1)

and its associated model in a periodic environment [AlSharawi & Angelos, 2006]

xn+1 = µnxn(1− xn), µn+p = µn ∈ [0, 4], xn ∈ [0, 1] and n ≥ 0. (4.2)

By introducing a delay k between generations in Eq. (4.2), we obtain

xn+1 = µnxn−k(1− xn−k), µn+p = µn ∈ [0, 1], xn ∈ [0, 1], n, k ∈ N. (4.3)

Let us fix p and k so that gcd(p, k) = 1, then Theorem 4.1 applies here. In this case,

xk(n+1) = fk(n+1)−1(xkn), n ∈ N (4.4)

of Eq. (4.3) reduces to Eq. (4.2) and it is known [AlSharawi & Angelos, 2006] that
the cascade of periods is given by

3p ≺ 5p ≺ · · · ≺ 6p ≺ 10p ≺ · · · 3 · 2np ≺ 5 · 2np ≺ · · · ≺ 2p ≺ p

Observe that each number rp ∈ Ap,r, an rp-cycle of Eq. (4.3) generates q-cycles for
all q ∈ Ak,rp and Ak,rp ⊆ Apk,r. Thus, the cascade of periods of periodic orbits of Eq.
(4.3) is given by

Ak,3p ¤Ak,5p ¤ · · ·¤Ak,6p ¤Ak,10p ¤ · · · Ak,3·2np ¤Ak,5·2np ¤ · · ·¤Ak,2p ¤Ak,p.

5 Stability Analysis

Again in this section, we divide the analysis into two parts according to the divisibility
of the delay k by the periodicity p.
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5.1 The period divides the delay

Assume the period p of Eq. (1.5) divides the delay k, and let Cr := {c0, c1, . . . , cr−1}
be an r-cycle of Eq. (1.5). Then it follows from our analysis in Sec. 2 that each map
fi, 0 ≤ i ≤ k − 1, has the periodic orbit

Spi
r := {ci mod r, c(i+k) mod r, . . . , c(i+(q−1)k) mod r},

of minimal period pi that divides q := lcm (r, k)/k. Thus Spi
r has a period q (not

necessarily minimal) under the map fi.

Definition 5.1. The r-cycle Cr = {c0, c1, · · · , cr−1} is stable {asymptotically stable}
{globally asymptotically stable (GAS)} if for each i, 0 ≤ i ≤ k − 1, the cycle Spi

r is
stable {asymptotically stable } {GAS} under the map fi. The r-cycle Cr, is unstable
if for some i, 0 ≤ i ≤ k − 1, Spi

r is unstable under the map fi.

Lemma 5.1. Suppose the maps fi of Eq. (1.5) are differentiable on an interval X.
Then the following statements hold true. The r-cycle Cr = {c0, c1, · · · , cr−1} is

(i) asymptotically stable if for each i, 0 ≤ i ≤ k − 1,

J ′i = |f ′i(ci mod r)f
′
i(c(i+k) mod r) . . . f ′i(c(i+(q−1)k) mod r)| < 1.

(ii) unstable if for some i,
J ′i > 1.

The circumstances under which global stability is assured is the subject of the
following theorem.

Theorem 5.1. Suppose each map fj : Xj → Xj, 0 ≤ j ≤ p − 1 is continuous
on a connected metric space Xj. If Cr = {c0, ..., cr−1} is a GAS r-cycle of the p-
periodic difference equation xn = fn−1(xn−k), then r ∈ Ap,1. Furthermore, for each
0 ≤ i ≤ r − 1, the maps fi, fi+r, . . . , fi+k−r have the same fixed point ci.

Proof. Suppose Cr := {c0, c1, ..., cr−1} is an r-cycle of Eq. (1.5). By Lemma 2.3, for
each i ∈ {0, 1, ..., k − 1}, ci ∈ Si, where Si is a GAS cycle of fi. If the phase space
Xi is connected, then Si must be of period one under fi [Elaydi & Yakubu, 2002].
Furthermore, since a map can not have more than one GAS fixed point, then r|p.
Finally, the last statement comes directly from Lemma 2.2.

We close this case with the following example:

Example 5.1. It is well known that the logistic map f(x) = µx(1 − x), where
µ ∈ (0, 1] and x ∈ [0, 1] has the GAS equilibrium point x∗ = 0. Also, when µ ∈ (1, 3)
and x ∈ (0, 1), it has the GAS equilibrium point x∗ = µ−1

µ
. Now take these facts into

consideration, and consider p = k = 8. We construct examples of GAS r-cycles of the
equation

xn = fn−1 mod 8(xn−8),

for all r ∈ A8,1.
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(1) Define fi(x) = 1
1+i

x(1− x), 0 ≤ i ≤ 7, x ∈ [0, 1]. Then x∗ = 0 is a GAS 1-cycle.

(2) Define
f0(x) = f2(x) = f4(x) = f6(x) = 2x(1− x), x ∈ (0, 1),

and

fj(x) =
1

j + 1
x(1− x), j = 1, 3, 5, 7, x ∈ [0, 1].

Then {1
2
, 0} is a GAS 2-cycle.

(3) Define
f0(x) = 1

2
x(1− x), x ∈ [0, 1],

f4(x) = 1
4
x(1− x), x ∈ [0, 1],

f1(x) = f5(x) = (1 + 1
5
)x(1− x), x ∈ (0, 1),

f2(x) = f6(x) = (1 + 1
6
)x(1− x), x ∈ (0, 1),

f3(x) = f7(x) = (1 + 1
7
)x(1− x), x ∈ (0, 1).

Then {0, 1
6
, 1

7
, 1

8
} is a GAS 4-cycle.

(4) Define

fj(x) = (1 +
1

1 + i
)x(1− x), 0 ≤ i ≤ 7, x ∈ (0, 1).

Then {1
2
, 1

3
, 1

4
, 1

5
, 1

6
, 1

7
, 1

8
} is a GAS 8-cycle.

Observe that the method used above can be generalized to construct an equation
of the form xn = µn−1 mod pxn−k(1− xn−k) with a GAS r-cycle for any r ∈ Ap,1.

5.2 The period does not divide the delay

In this section we adapt Definition 7 in [AlSharawi et al., 2006] with some obvious
modifications. We define the operator

Φk
n(fn0) := f(n0+(n−1)k) ◦ · · · ◦ fn0+k ◦ fn0 ,

for 0 ≤ n0 ≤ p− 1, and n ∈ Z+.
Let Cr = {c0, c1, . . . , cr−1} be an r-cycle of Eq. (1.5). Let q = lcm (r,k)

k
, s =

lcm (p,k)
k

, and l = lcm (q, s). Then we have the following adaptation of Definition 7 in
[AlSharawi et al., 2006].

Definition 5.2. The r-cycle Cr is

(i) uniformly stable if given ε > 0, there exists δ > 0 such that for any n0 =
0, 1, . . . , k−1, and x ∈ X, |x−cn0 mod r| < δ implies |Φk

n(fn0)x−Φk
n(fn0)cn0 mod r | <

ε, for all n ∈ Z+
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(ii) uniformly attracting if there exists η > 0 such that for any n0 = 0, 1, . . . , k − 1,
and x ∈ X, |x − cn0 mod r| < η implies lim

n→∞
Φnl(fn0)x = cn0 mod r, where l =

lcm (q, s) as defined above.

(iii) uniformly asymptotically stable (UAS) if it is both uniformly stable and uni-
formly attracting.

(iv) GAS if it is UAS and η = ∞.

Now, it is straight forward to prove the following stability criteria.

Corollary 5.1. Suppose the maps fi, 0 ≤ i ≤ p− 1, are differentiable on an interval
X. Let Cr = {c0, c1, ..., cr−1} be an r-cycle of Eq. (1.5). Let d = gcd(r, k), d̂ =
gcd(p, k), and l = lcm (p

d̂
, r

d
). Then

(i) Cr is UAS if ∣∣∣∣∣
l−1∏
i=0

f ′ik+j(cik+j mod r)

∣∣∣∣∣ < 1, ∀ j = 0, ..., k − 1.

(ii) Cr is unstable if

∣∣∣∣∣
l−1∏
i=0

f ′ik+j(cik+j mod r)

∣∣∣∣∣ > 1, for some j = 0, ..., k − 1.

This leads to the following generalization of a theorem due to Elaydi and Sacker
[2005a].

Theorem 5.2. Let p and k be positive integers in which p is not a divisor of k,, and
define d̂ := gcd(p, k). Suppose each map fik+j : Xj → Xj, 0 ≤ j < d̂, 0 ≤ i < p

d̂
is

continuous on a connected metric space Xj. If Cr := {c0, c1, ..., cr} is a GAS r-cycle
of the p-periodic difference equation with delays xn = fn−1(xn−k), then r ∈ Ap,1.

Proof. For each 0 ≤ j ≤ k− 1, cj is the start of a pj-cycle of the p

d̂
-periodic difference

equation
xkn+j+1 = fkn+j(xk(n−1)+j+1), n ∈ N.

Say Sj = {cj mod r, cj+k mod r, · · · , cj+(pj−1)k mod r}. Furthermore, this Sj cycle is GAS;
consequently, it is the unique cycle of the jth equation. By Elaydi-Sacker theorem,
pj|pd̂ , and by the discussion provided after Eq. (3.1), we obtain Sj = Sj+d̂ = Sj+2d̂ =

· · · = Sj+k−d̂ for all 0 ≤ j ≤ d̂− 1. Now, q := lcm (p0, · · · , pk−1) = lcm(p0, · · · , pd̂−1)
and q|p

d̂
. From the facts we provided in Eq. (3.3), the points cd̂, cd̂+1, · · · , ck−1 mod r

are determined uniquely by the structure of S0, S1, · · · , Sd̂−1, and visa versa, which

implies gcd(r, k)|d̂. Hence, r = q · gcd(r, k)|p.
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The next two examples illustrate the notion of global stability when p is not a
divisor of k.

Example 5.2. Let p and k be positive integers in which p is not a divisor of k,
and let r ∈ Ap,1. Define d̂ := gcd(p, k) and d := gcd(r, k), then lcm (r, k)/k divides
lcm (p, k)/k, which implies r

d
divides p

d̂
. Furthermore, since k

d
and r

d
are relatively

prime, then there exists a unique positive integer h, 1 ≤ h < r
d
, such that k

d
· h =

1 mod r
d
. Now, define m := p

d̂
and m∗ = r

d
, and for 0 ≤ j ≤ m − 1, 0 ≤ i ≤ k − 1,

0 ≤ s ≤ d
d
− 1, define the maps

fjk+i(x) :=
bj/m∗c
m + 1

(x− (sh+ j mod m∗))+(j +sh+1 mod m∗), if sd ≤ i < (s+1)d,

where b·c is the greatest integer function. Then the initial condition (x−k+1, . . . , x0) :=

(

d times︷ ︸︸ ︷
0, ..., 0,

d times︷ ︸︸ ︷
h mod m∗, ..., h mod m∗, ...,

d times︷ ︸︸ ︷
(
k

d
− 1)h mod m∗, ..., (

k

d
− 1)h mod m∗)

generates a GAS r-cycle.

Finally, we apply the theory of this section on the Beverton-Holt model [Beverton
& Holt, 2004].

Example 5.3. Consider the Beverton-Holt population model without age-structure

xn+1 =
µKxn

K + (µ− 1)xn

, n ∈ N, xn ∈ R+, (5.1)

where µ > 1 is the “inherent growth rate” and K > 0 is the “carrying capacity.” This
equation has a GAS equilibrium point, namely x = K. In a periodically fluctuating
environment, the constant carrying capacity K is replaced by a p-periodic sequence
{Kn : Kn > 0} [Cushing & Henson, 2001, 2002]. See also Elaydi and Sacker [2005a,
2005b], Kon [2006] and Kocic [2005]. Thus, Eq. (5.1) becomes

xn+1 =
µKnxn

Kn + (µ− 1)xn

, Kn+p = Kn > 0, µ > 1, n ∈ N, xn ∈ R+. (5.2)

Eq. (5.2) has a GAS p-cycle and it can be written explicitly as {x0, x1, x2, . . . , xp−1},
where

xi =

p−1∑
j=0

µj

(
p−1∑
j=0

µj

Ki+j mod p

)−1

, i = 0, 1, . . . , p− 1.

Again, by introducing a delay k ≥ 0 between generations, the periodic Beverton-Holt
equation becomes

xn+1 =
µKnxn−k+1

Kn + (µ− 1)xn−k+1

, Kn+p = Kn > 0, µ > 1, n ∈ N, x−k+1, . . . , x0 ∈ R+.

(5.3)
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For the reader’s convenience, we fix p = 6 and k = 4. Since gcd(6, 4) = 2, then from
Eqs. (3.1), we need to investigate the two 3-periodic difference equations

x4n+1 =
µK4n mod 6 x4n−3

K4n mod 6 + (µ− 1)x4n−3

, n ∈ N (5.4)

x4n+2 =
µK4n+1 mod 6 x4n−2

K4n+1 mod 6 + (µ− 1)x4n−2

, n ∈ N. (5.5)

Eq. (5.4) has the GAS 3-cycle

Figure 1: Different orbits converge to the GAS 6-cycle when r = 1.5, K0 = 0.5,
K1 = 1.0, K2 = 1.5, K3 = 2.0, K4 = 2.5, and K5 = 3.5.

{x0, x4, x2} :=

{
1 + µ + µ2

K−1
0 + µK−1

4 + µ2K−1
2

,
1 + µ + µ2

K−1
4 + µK−1

2 + µ2K−1
0

,
1 + µ + µ2

K−1
2 + µK−1

0 + µ2K−1
4

}
,

and Eq. (5.5) has the GAS 3-cycle

{x1, x5, x3} :=

{
1 + µ + µ2

K−1
1 + µK−1

5 + µ2K−1
3

,
1 + µ + µ2

K−1
5 + µK−1

3 + µ2K−1
1

,
1 + µ + µ2

K−1
3 + µK−1

1 + µ2K−1
5

}
.

Now, the 6-periodic Beverton-Holt equation with delay 4 has the GAS 6-cycle

{x0, x1, x2, x3, x4, x5}
and it can be obtained by the initial condition

(x−3, x−2, x−1, x0) = (x0, x1, x2, x3).
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To show computer simulation for this GAS 6-cycle, we fix

µ = 1.5, K0 = 0.5, K1 = 1.0, K2 = 1.5, K3 = 2.0, K4 = 2.5 and K5 = 3.0.

Figure 1 shows the result.

24



References

[1] AlSharawi, Z. [2006] Periodic Discrete Dynamical Systems, Ph.D. Thesis, Central
Michigan University, Mount Pleasant, MI.

[2] AlSharawi, Z. & Angelos, J. [2006] “On the periodic logistic map,” Appl. Math.
Comput. 180 342352.

[3] AlSharawi, Z., Angelos, J., Elaydi, S. & Rakesh, L. [2006] “An extension of
Sharkovsky’s theorem to periodic difference equations,” J. Math. Anal. Appl.
316, 128-141.

[4] Balibrea, F. & Linero, A. [2003] “On the periodic structure of delayed difference
equations of the form xn = f(xn−k) on I and S1,” J. Difference Equ. Appl. 9,
359-371.

[5] Beverton, R. J. H., & Holt, S. J. [2004] On the Dynamics of Exploited Fish
Populations (The Blackburn Press).

[6] Cushing, J. & Henson, S. [2001] “Global dynamics of some periodically forced,
monotone difference equations,” J. Difference Equ. Appl. 7, 859-872.

[7] Cushing, J. & Henson, S. [2002] “A periodically forced Beverton-Holt equation,”
J. Difference Equ. Appl. 8, 1119-1120.

[8] Diekmann, O. & van Gill, S. A. [2000] “Difference equations with delay,” Japan.
J. Indust. Appl. Math. 17, 73-84.

[9] Elaydi, S. [1996] “On a converse of Sharkovsky’s theorem,” Amer. Math. Monthly
103, 386-392.

[10] Elaydi, S. [1999] Discrete Chaos (Chapman & Hall).

[11] Elaydi, S. [2005] An Introduction to Difference Equations (Springer, NY).

[12] Elaydi, S. & Sacker, R. [2005a] “Global stability of periodic orbits of nonau-
tonomous difference equations and population biology,” J. Differential Equations
208, 258-273.

[13] Elaydi, S. & Sacker, R. [2005b] “Nonautonomous Beverton-Holt equations and
the Cushing-Henson conjectures,” J. Difference Equ. Appl. 11, 337-346.

[14] Elaydi, S. & Yakubu, A. [2002] “Global stability of cycles: Lotka-Volterra com-
petition model with stocking,” J. Difference Equ. Appl. 8, 537-549.

[15] Franke, J. E. & Selgrade, J. F. [2003] “Attractors for periodic dynamical sys-
tems,” J. Math. Anal. Appl. 286, 64-79.

25



[16] Franke, J. E. & Yakubu, A. [2005] “Multiple attractors via CUSP bifurcation in
periodically varying environments,” J. Difference Equ. Appl. 11, 365-377.

[17] der Heiden, U. & Liang, M. [2004] “Sharkovsky orderings of higher order differ-
ence equations,” Discrete Contin. Dyn. Syst. 11, 599-614.

[18] Henson, S. [2000] “Multiple attractors and resonance in periodically forced pop-
ulation models,” Phys. D 140, 33-49.

[19] Kocic, V. L. [2005] “A note on the nonautonomous Beverton-Holt model,” J.
Difference Equ. Appl. 11, 415-422.

[20] Kocic, V. & Ladas, G. [1993] Global Behavior of Nonlinear Difference Equations
of Higher Order With Applications (Kluwer Academic Publishers).

[21] Kon, R. [2005] “Attenuant cycles of population models with periodic carrying
capacity,” J. Difference Equ. Appl. 11, 423-430.

[22] Kot, M. [2001] Elements of Mathematical Ecology (Cambridge University Press,
Cambridge).

[23] Liang, M. L. [2003] “Multistability of the difference equations xn = f(xn−k),” J.
Difference Equ. Appl. 9, 897-909.

[24] van Lint, J. H., & Wilson, R. M. [2001] A Course in Combinatorics (Cambridge
University Press, Cambridge).

[25] May, R. M. [1976] “Simple mathematical models with very complicated dynam-
ics,” Nature 261 459467.

[26] Ricker, W. E. [1954] “Stock and recruitment,” J. Fish. Res. Bd. Can. 11 559-
623.

[27] Selgrade, J. F. & Roberds, H. D. [2001] “On the structure of attractors for
discrete, periodically forced systems with applications to population models,”
Phys. D 158, 69-82.

[28] Sharkovsky, A. N. [1964] “Co-existence of cycles of a continuous mapping of the
line into itself (Russian),” Ukrain. Math. Zh. 16, 61-71.

26


