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Abstract

In this paper, we consider discrete models of the form xn+1 = xnf(xn−1) +

hn, where hn is a nonnegative p-periodic sequence representing stocking in the

population, and investigate their dynamics. Under certain conditions on the

recruitment function f(x), we give a compact invariant region, and use Brouwer

fixed point theorem to prove the existence of a p-periodic solution. Also, we

prove the global attractivity of the p-periodic solution when p = 2. In particular,

this study gives some theoretical results attesting to the belief that stocking

(whether it is constant or periodic) preserves the global attractivity of the

periodic solution in contest models with short delay. Finally, as an illustrative

example, we discuss Peilou’s model with periodic stocking.

Keywords: Discrete models; contest models; stocking; local stability; global attractor;

Pielou’s equation.

Mathematics Subject Classification (2000): 92D25, 39A10.

∗This work is partially supported by SQU internal grant IG/SCI/DOMS/11/14.

1



1 Introduction

In mathematical ecology, difference equations of the form xn+1 = xnf(xn), n ∈ N :=

{0, 1, ...} are used to model single-species with non-overlapping generations [9, 12],

where xn denotes the number of sexually mature individuals at discrete time n and

f(xn) is the density-dependent net growth rate of the population. The form of the

function f(x) is chosen to reflect certain characteristics of the studied population such

as intra-specific competition. For some background readings on the type of models

obtained by the various choices of f(x), we refer the reader to [6,9,29] in the discrete

case and [10] and the references therein for the continuous case. Two classical types

are known as the scrambled and contest competition models [29]. Our attention

in this work is limited to contest competition models where f(x) is assumed to be

decreasing, xf(x) is increasing and asymptotic to a certain level at high population

densities. A prototype of such these models is the Beverton-Holt model [7], which is

obtained by considering f(x) = µKx
K+(µ−1)x

. Here, µ > 1 is interpreted as the growth

rate per generation and K is the carrying capacity of the environment. In populations

with substantial time needed to reach sexual maturity, certain delay effect must be

included in the function f(x), which motivates considering difference equations of the

form

xn+1 = xnf(xn−k), (1.1)

where k is a fixed positive integer [14]. In general, it is widely known that long time

delay has a destabilizing effect on the population’s steady state while short time delay

can preserve stability [15, 17, 28]. However, when the delay is large, the dynamics of

Eq. (1.1) is less tractable [11]; furthermore, we are more interested here on the effect

of stocking than the effect of delay, and therefore, we keep the time delay short to

preserve stability in the absence of stocking. In particular, we fix the delay to be k = 1.

A substantial body of research has explored the effect of constant stocking on

population models without delay [16, 21–27]. In brief and general terms, it has been

found that constant stocking can be used to suppress chaos, reverse the period dou-

bling phenomena, lower the risk of extinction, and have a stabilizing effect on the

population steady state. On the other hand, and to the best of our knowledge, little

(if any) has been done to explore the effect of stocking (whether constant or periodic)

on models with delay. So, our work here has a two-fold objective; to study the effect

of periodic stocking on contest competition models with delay and to complement

the work of the author and his collaborators in [5], where the dynamics of Eq. (1.1)
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with k = 1 was studied under the effect of constant yield harvesting. Recall that we

have some accumulating restrictions on the function f(x) due to the nature of the

considered type of models. So, in an abstract mathematical form, our problem can

be posed as follows: Consider the difference equation

xn+1 = xnf(xn−1) + hn, (1.2)

where {hn} is a non-negative p-periodic sequence representing stocking due to refuge,

immigration, feeding, ...etc, and the function f(x) obeys the following conditions:

(C1) f(0) = b > 1.

(C2) f ∈ C1([0,∞)) and f(x) is decreasing on [0,∞).

(C3) xf(x) is increasing and bounded.

The condition in (C1) is a generic one in the absence of stocking, i.e., if b ≤ 1 and

hn = 0, then there is no long term survival regardless of the initial density of the

population.

This paper is organized as follows: In Section two, we give some preliminary

results concerning local stability, boundedness and global stability of Eq. (3.1) when

the stocking sequence is 1-periodic, i.e., when hn = h > 0 for all n ∈ N. In Section

three, the period of the stocking sequence is taken to be larger than one. A compact

invariant region has been established and a characterization of the periodic solutions

is given. Also, the global asymptotic behavior of solutions has been investigated when

p = 2. As a particular case of Eq. (3.1), we discuss Pielou’s equation with delay one

in Section four.

2 Preliminary results: the autonomous case

In this section, we focus on the autonomous case, i.e., hj = h > 0 for all j =

0, 1, . . . , p− 1. Thus, Eq. (1.2) becomes

xn+1 = xnf(xn−1) + h. (2.1)

Some results concerning Eq. (2.1) can be found in the literature [18]; however, for

the sake of completeness and usage in the nonautonomous case, we give the following

preliminary results.

3



2.1 Local stability and boundedness

Eq. (1.2) has two equilibrium solutions, say x̄1,h and x̄2,h. The smaller equilibrium

x̄1,h originates from the origin and slides downward as h increases, while the large

equalibrium x̄2,h originates from the positive equilibrium that exists in the absence

of stocking and slides upward. Obviously, x̄1,h is negative, and therefore beyond our

interest. Since x̄2,h is positive and increasing in h, f(x̄2,h) < 1 for all h > 0. The

linearized equation associated with Eq. (2.1) at a fixed point x̄ is given by

yn+1 − f(x̄)yn − x̄f ′(x̄)yn−1 = 0. (2.2)

Define p := f(x̄) and q := −x̄f ′(x̄). For x̄ = x̄2,h, we have 0 < p < 1 and q is non-

negative. The roots of λ2−pλ+q = 0 determine the local stability of our equilibrium

point. Since λj,h = 1
2
(p + (−1)j

√
p2 − 4q), j = 1, 2, x̄2,h starts as stable at h = 0 and

stays stable as long as q < 1. Figure 1 clarifies the relationship between p, q and the

magnitude of λj,h. We summarize these facts in the following proposition:

p

q

p2
=4q

q =1

q=p−1

|λ1 ,h| < 1, |λ2 ,h| < 1

|λ1 ,h| >1, |λ2 ,h| >1

p =1

Figure 1: This figure shows the magnitude of the characteristic roots of Eq. (2.2)

depending on the location of the (p, q) values, where p = f(x̄) and q = −x̄f ′(x̄).

Proposition 2.1. Assume that conditions (C1) to (C3) are satisfied and h > 0. The

positive equilibrium x̄2,h of Eq. (2.1) is locally asymptotically stable.

Proof. Since x̄2,h > x̄2,0, we have p < 1. Also, since F (t) = tf(t) is increasing, we

obtain F ′(t) = tf ′(t)+f(t) > 0 and consequently−q+p > 0. Thus, we have q < p < 1.

Now, Figure 1 makes the rest of the proof clear.
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It is obvious that xk ≥ h for all k ≥ 1. On the other hand, since

xn+1 = xn−1f(xn−1)f(xn−2) + hf(xn−1) + h ≤ xn−1f(xn−1)b + hb + h,

the boundedness of y = tf(t) assures the boundedness of all solutions of Eq. (1.2).

2.2 Oscillations and global stability

A solution of Eq. (2.1) is called oscillatory if it is neither eventually less than nor

larger than x̄2,h [11]. Also, one can consider oscillations about a curve [5]. A solution

{xn} of Eq. (2.1) is called oscillatory about a curve H(x, y) = 0 if the sequence

{un = (xn−1, xn)} does not eventually stay on one side of the curve. The latter

definition can be more convenient in some cases; however, in Eq. (2.1), both are

equivalent when we consider H(x, y) = y − x as we show in the following result:

Proposition 2.2. A solution of Eq. (2.1) is oscillatory if and only if it is oscillatory

about the curve y = x.

Proof. Assume that {xn} oscillates about x̄2,h, but it is not oscillatory about y = x.

So, {xn} is either eventually increasing or eventually decreasing, which contradicts

the assumption that xn is oscillatory about x̄2,h. Conversely, suppose {(xn−1, xn)}
oscillates about y = x, but {xn} does not oscillate about x̄2,h. First, we consider the

case xn ≤ x̄2,h for all n ≥ n0. If xm > xm−1 for some m > n0, then f(xm) < f(xm−1)

and consequently

xm+1 = xmf(xm−1) + h > xmf(xm) + h > xm.

So we can induce an eventually increasing sequence which contradicts our assumption.

If xm ≤ xm−1 for some m > n0, then xm+1 ≤ xmf(xm) + h. Thus, either xm+1 ≤ xm

and the induction leads to a decreasing sequence that must converge which is not

possible, or xm+1 > xm and we go back to the first scenario. Finally, the case

xn ≥ x̄2,h for all n ≥ n0 can be handled similarly.

Next, we define the map

T (x, y) = (y, yf(x) + h). (2.3)

The map T portrays the solutions of Eq. (2.1) geometrically in the nonnegative

quadrant, and therefore, it plays a prominent role in the sequel. Here, we used the

nonnegative quadrant to denote the positive quadrant union the axes on the bound-

ary. By applying the map T on the regions above and below the curve y = x, one
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can observe that a non-equilibrium solution of Eq. (2.1) must be oscillatory. Also,

using the map T, one can observe that stocking increases the frequency of oscilla-

tions in the following sense: The length of semi-cycles in the absence of stocking

is longer than the length of semi-cycles in the existence of stocking, where a semi-

cycle is used to denote the string of consecutive terms above or below the equilibrium.

Since solutions of Eq. (2.1) are bounded, we define

S := lim sup xn and I := lim inf xn. (2.4)

From the equation xn+2 = xnf(xn)f(xn−1)+hf(xn)+h and using the fact that tf(t)

is increasing, we obtain

S ≤ Sf(S)f(I) + hf(I) + h and I ≥ If(I)f(S) + hf(S) + h. (2.5)

When h > 0, we have S ≥ I > 0. So, we can multiply the first inequality by I and

the second one by S to obtain

S(f(S) + 1) ≤ I(f(I) + 1).

Since t(f(t)+1) is increasing, we obtain I = S. This approach was used by Camouzis

and Ladas in [8], and it was used by Nyerges in [18] to prove that x̄2,h is globally

attractive. This fact together with the local stability established in Proposition 2.1

shows the global asymptotic stability of x̄2,h as we summarize in the following propo-

sition:

Proposition 2.3. The equilibrium solution x̄2,h of Eq. (2.1) is globally asymptotically

stable.

Next, it is obvious that the positive quadrant forms an invariant for Eq. (2.1);

however, since solutions are bounded, we are interested in a bounded invariant that

can be developed to serve us in the periodic case. Notice that by invariance here we

always mean forward invariance, i.e., Rh is an invariant of Eq. (2.1) if T (x, y) ∈ Rh

for all (x, y) ∈ Rh. To establish the existence of an invariance, we need to have in

mind the following simple fact:

Proposition 2.4. There exists a finite constant ch ≥ h such that Gh(t) = (bt +

h)f(t) ≤ bch for all t ≥ 0. Furthermore, ch can be taken as ch :=
1

b
sup

t
Gh(t).

Proof. Use the fact that tf(t) is bounded and f(t) is decreasing with f(0) = b and

lim
t→∞

f(t) = 0 to obtain the result.
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Next, define the curves Γj, j = 0, 1, 2, 3, 4 to be the line segments that connect the

points (0, 0), (0, h), (ch, bch + h), (bch + h, bch + h), (bch + h, 0) and (0, 0) respectively.

Now, define Rh to be the region bounded by the curves of Γj, j = 0, . . . , 4 including

the boundary, then the following result gives a bounded invariant of Eq. (2.1). Here,

it is worth mentioning that Γ0 shrinks to a point at h = 0; however, our notation

and arguments about the invariant region are still valid except the boundary of Rh

becomes a quadrilateral rather than a pentagon.

Theorem 2.1. The region Rh as defined above gives a compact invariant for Eq.

(2.1).

Proof. Consider the map T (x, y) as defined in (2.3). T is one-to-one on the positive

quadrant. Thus, all we need is to test T on the boundary of Rh. It is straightforward

computations to find that T (Γ0) ⊆ Γ1. Since horizontal line segments are mapped to

vertical line segments under T, we test the end points of Γ2 to find

T (ch, bch + h) = (bch + h, (bch + h)f(ch) + h)

and

T (bch + h, bch + h) = (bch + h, (bch + h)f(bch + h) + h).

By the choice of ch given in Proposition 2.4, we have

(bch + h)f(bch + h) + h ≤ (bch + h)f(ch) + h ≤ bch + h.

Thus, T (Γ2) ⊂ Γ3. Next, T (Γ3) ⊂ Rh and T (Γ4) = (0, h) are straightforward to

observe. Finally, we show that T (Γ1) ⊂ Rh. For 0 ≤ t ≤ ch, we have

T (t, bt + h) = (bt + h, (bt + h)f(t) + h);

however, h ≤ bt + h ≤ bch + h and (bt + h)f(t) + h ≤ bch + h by the choice of ch,

which completes the proof. Figure 2 illustrates the region Rh and its image under the

map T when (bt + h)f(t) is increasing.

3 Periodic stocking

In this section, we force periodic stocking on Eq. (2.1) to obtain

xn+1 = xnf(xn−1) + hn, (3.1)
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Rh

T (Rh)

xn−1
xn−1

xn
xn

Γ0

Γ1

Γ2

Γ3

Γ4

Figure 2: The figure on the left shows the choice of the compact region Rh when

y = (bt + h)f(t) is increasing, and the one on the right shows T (Rh) with blue

boundary inside Rh.

where hn is a p-periodic sequence of stocking quotas, and p denotes the minimal

period. Observe that some consecutive values of the stocking sequence can be zero;

however, it is natural to assume
∑p−1

j=0 hj > 0. As in the constant case, we associate

Eq. (3.1) with a p-periodic sequence of two dimensional maps that we use in the

sequel, namely {Tj, j = 0, 1, . . . , p− 1}, where Tj(x, y) = (y, yf(x)+hj). It is obvious

that if we replace h by hj in Theorem 2.1, then Rhj
forms a compact and invariant

region for the individual map Tj, which enables us to build a suitable machinery for

establishing the existence of a periodic solution. It is convenient now to develop the

notations of the previous section so it can suit the periodic case. We denote the line

segments that form the boundary of Rhj
by Γj,i, i = 0, . . . , 4 where Γj,i corresponds to

Γi in the autonomous case, and that is associated with the individual map Tj. Also,

the constant ch in Proposition 2.4 will be replaced by chj
and that is associated with

the individual map Tj.

3.1 Existence of a periodic solution

We start by establishing a compact invariant for Eq. (3.1). Define

hm := max{h0, h1, · · · , hp−1} and cm := max{chj
: j = 0, . . . , p− 1},

where chj
as taken in Proposition 2.4, i.e., chj

= 1
b
supt Ghj

(t), then use hm and cm to

define the region Rhm as in the paragraph preceding Theorem 2.1. Now, we have the

following result:

Lemma 3.1. Consider Eq. (3.1) together with the associated p-periodic sequence of

maps {Tj}. Each of the following holds true:
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(i) We have Rhi
⊆ Rhj

Whenever hi ≤ hj.

(ii) Rhm is a compact invariant for each individual map Tj.

(iii) Rhm is a compact invariant for the map T̂ := Tp−1 ◦ Tp−2 ◦ · · · ◦ T0.

Proof. (i) When hi ≤ hj, we obtain Ghi
(t) ≤ Ghj

(t) for all t ≥ 0. Thus, chi
≤ chj

and

the result becomes obvious from Proposition 2.4 and the geometric structure of the

regions Rhi
and Rhj

. To prove (ii), let (x, y) ∈ Rhm , we show that Tj(x, y) ∈ Rhm .

Since

Tj(x, y) = (y, yf(x) + hj) = (y, yf(x) + hm)− (0, hm − hj) = Tm(x, y)− (0, hm − hj),

the first component of Tj(x, y) is the same as the first component of Tm(x, y) and

the second component of Tj(x, y) is lower than the second component of Tm(x, y).

Now, the fact that Tm(x, y) ∈ Rhm and the geometric structure of Rhm assures that

Tj(x, y) ∈ Rhm . Finally, (iii) follows from (ii).

Periodic stocking (or harvesting) has the effect of forcing population cycles to

evolve and become multiples of the stocking/harvesting period as we show in the

following result, which is more general than Eq. (3.1).

Theorem 3.1. Consider the general difference equation xn+1 = F (xn, xn−1, . . . , xn−k)

with p-periodic stocking (or harvesting). If a periodic solution exists, then the period

is a multiple of p.

Proof. The proof is by contradiction; suppose that we have a r-periodic solution of

the equation xn+1 = F (xn, xn−1, . . . , xn−k) + hn for some r that is not a multiple

of p. Then the greatest common divisor between r and p (d := gcd(r, p)) is not p.

Define the maps Fi := F + hi, i = 0, 1, . . . , p − 1, then for each 0 ≤ i ≤ d − 1, the

maps {Fkd+i, k = 0, 1, . . . , p
d
− 1} must agree on the point Xi := (xi, xi−1, . . . , xi−k),

where the components xi−k, xi+1−k, . . . , xi are consecutive elements of the p-periodic

solution. This implies

hi = hd+i = h2d+i = · · · = h( p
d
−1)d+i

for all i = 0, 1, . . . , d − 1, which contradicts the minimality of the period of the p-

periodic difference equation.

Theorem (3.1) shows that Eq. (3.1) has no equilibrium solutions, and therefore,

our previous notion of characterizing oscillatory solutions based on the oscillations
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about y = x is the valid one here. Thus, solutions of Eq. (3.1) are oscillatory about

y = x because they cannot be monotonic. Although it is natural for fluctuations

in the environment to create fluctuations in the population, we find it appropriate

here to connect the loosely-defined term “fluctuation” with the mathematically well-

defined term “oscillation.” Next, we use the Brouwer fixed theorem [30] (page 51) to

prove the existence of a periodic solution of Eq. (3.1):

Theorem 3.2 (Brouwer Fixed-Point Theorem). Let M be a a nonempty, convex and

compact subset of Rn. If T : M → M is continuous, then T has a fixed point in M.

Theorem 3.3. The p-periodic difference equation in Eq. (3.1) has a p-periodic solu-

tion.

Proof. Consider the map T̂ := Tp−1 ◦Tp−2 ◦ · · · ◦T0, then using Lemma 3.1, we obtain

T̂ : Rhm → Rhm . Furthermore, Rhm is nonempty, compact and obviously convex. So,

by Theorem 3.2, T̂ has a fixed point in Rhm . This fixed point establishes a periodic

solution of Eq. (3.1) with minimal period that divides p; however, Theorem 3.1 shows

that the period must be p.

3.2 Global attractivity of the periodic solution when p = 2

Consider the periodicity of Eq. (4.1) to be p = 2 and suppose h0 + h1 6= 0. We

partition solutions of Eq. (4.1) into two subsequences, the one with even indices

{x2n} and the one with odd indices {x2n}. Thus, we have

x2n+1 = x2nf(x2n−1) + h0 and x2n+2 = x2n+1f(x2n) + h1. (3.2)

Since solutions are bounded, we define

lim inf{x2n+i} = Ii and lim sup{x2n+i} = Si, i = 0, 1. (3.3)

Now, the second iterate of Eqs. (3.2) gives us

x2n+2 =x2nf(x2n)f(x2n−1) + h0f(x2n) + h1 (3.4)

x2n+3 =x2n+1f(x2n+1)f(x2n) + h1f(x2n+1) + h0. (3.5)

Use the fact that f(t) is decreasing and tf(t) is increasing in Eq. (3.4) to obtain

S0 ≤ S0f(S0)f(I1) + h0f(I0) + h1 (3.6)

I0 ≥ I0f(I0)f(S1) + h0f(S0) + h1. (3.7)
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Also, Eq. (3.5) gives us

S1 ≤ S1f(S1)f(I0) + h1f(I1) + h0 (3.8)

I1 ≥ I1f(I1)f(S0) + h1f(S1) + h0. (3.9)

Multiply Inequality (3.6) by I0 and Inequality (3.7) by S0 to obtain

S0I0f(I0)f(S1) + S0(h0f(S0) + h1) ≤ I0S0f(S0)f(I1) + I0(h0f(I0) + h1) (3.10)

Sine I0(h0f(I0) + h1) ≤ S0(h0f(S0) + h1), we obtain

f(I0)f(S1) ≤ f(S0)f(I1). (3.11)

Also, multiply Inequality (3.9) by I1 and Inequality (3.9) by S1 to obtain

S1I1f(I1)f(S0) + S1(h1f(S1) + h0) ≤ I1S1f(S1)f(I0) + I1(h1f(I1) + h0) (3.12)

Sine I1(h1f(I1) + h0) ≤ S1(h1f(S1) + h0), we obtain

f(I1)f(S0) ≤ f(I0)f(S1). (3.13)

Using inequalities (3.11) and (3.13), we obtain the following result:

Lemma 3.2. Consider I0, I1, S0, S1 as defined in Eqs. (3.3), then f(I0)f(S1) =

f(I1)f(S0).

Next, we give the following result:

Theorem 3.4. For p = 2, the 2-periodic solution of Eq. (3.1) is a global attractor.

Proof. Use the result of Lemma 3.2 in Inequality (3.10) to obtain

S0(h0f(S0) + h1) ≤ I0(h0f(I0) + h1).

Since g(t) = t(h0f(t)+h1) is increasing and I0 ≤ S0, we must have I0 = S0. Similarly,

use the result of Lemma 3.2 in Inequality (3.12) to obtain

S1(h1f(S1) + h0) ≤ I1(h1f(I1) + h0),

and consequently S1 = I1. Hence, Ii = Si, i = 0, 1 and the proof is complete.

Remark 3.1. Observe that the approach of this section proves not only the global

attractivity of the p-periodic solution but also the existence; however, Theorem 3.1 is

still significant here because it proves the minimality of the period. Also, establish-

ing the compact invariant region in Lemma 3.1 deserves embracing regardless of the

globally attractivity of the periodic solution. Finally, proving the global attractivity for

general p will be the topic of some future work.

11



4 Peilou’s equation with stocking

As an illustrative example to our results, we consider the function f in Eq. (3.1) to

be f(t) = bt
1+t

. It is worth mentioning that in the absence of stocking, Pielou ( [19],

page 80) suggested taking f(xn−m) = µK
K+(µ−1)xn−m

to account for certain fluctuating

populations, which cannot be modeled by Beverton-Holt equation. So, here we are

dealing with the dimensionless Pielou’s equation yn+1 = byn

1+yn−1
, which takes the

following form after forcing stocking:

yn+1 =
byn

1 + yn−1

+ hn. (4.1)

When hn = 0, Eq. (4.1) has the positive equilibrium x2,0 = b − 1 which is globally

asymptotically stable. When hn = h > 0, x2,h = 1
2
(b + h − 1) + 1

2

√
(b + h− 1)2 + h

inherits the global asymptotic stability of x2,0 as shown in [18]. Now, consider {hn} to

be 2-periodic. The 2-periodic solution {x̄, ȳ} is the solution of the system of equations

(y − h0)(1 + y) = bx and (x− h1)(1 + x) = by.

However, the solution is not simple to write explicitly, and therefore, we proceed by

choosing h0 = b + 1/(b− 1) and h1 = b. In this case, the 2-periodic solution {x̄, ȳ} is

given by

x̄ = b− 1 +
b

3
2√

b− 1
and ȳ = b +

1

b− 1
+

√
b(b− 1).

Figure 3 shows numerically that solutions are attracted to the 2-periodic cycle.

4

4.5

5

5.5

6

6.5

7

7.5

x

0 10 20 30 40 50
n

Figure 3: This graph shows the stable 2-cycle for the 2-periodic equation in Eq. (4.1)

when h0 = b + 1
b−1

and h1 = b, where b is fixed at 5
2
.

Another interesting notion that can be observed here is the resonance of solutions
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of Eq. (4.1). The arithmetic average of the globally attracting 2-periodic solution is

xsv :=
1

2
(x̄ + ȳ) =

1

2

(
2b− 1 +

1

b− 1
+

b
3
2√

b− 1
+

√
b(b− 1)

)
.

On the other hand, when we take the constant stocking h = 1
2
(h0 + h1) = b + 1

2(b−1)
,

we obtain the globally attracting equilibrium

x̄ =
4b2 − 6b + 3 +

√
16b4 − 32b3 + 28b2 − 12b + 1

4(b− 1)
.

Figure 4 shows that xav > x̄.

4

4.5

5
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Figure 4: This graph shows the average of the attracting 2-cycle (blue color) in

contrast with the equilibrium that results from constant stoking equals the average

of h0 and h1, where h0 = b + 1/(b− 1) and h1 = b.
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