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Abstract

In this survey, we consider a class of difference equations that encompasses contest

competition models of one species. We allow short delay in the recruitment, and force

several harvesting/stocking strategies. We provide a summary of some recent results

related to the dynamics of this class of models, and give some open problems and

conjectures that are worth exposing to the audience of difference equations.
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1 Introduction

Difference equations of the form xn+1 = xnf(xn), n ∈ N := {0, 1, 2, . . .} are used in modeling

certain populations with non-overlapping generations, where xn is the population size at a

discrete time unit n, and the function f(x) denotes the per-capita growth rate [7,18,19,25].

When successful individuals in certain species get all requirements while unsuccessful ones

get insufficient for survival or reproduction, the model is known as contest competition [30].

To understand the mechanistic basis of various discrete population models, we refer the

interested reader to a recent study by Anazawa [6] and to the study of Lomnicki [17]. From

a mathematical perspective, this motivates us to consider a class of functions that encompass

contest competition models, and therefore, we proceed with the following assumptions on f.

(A1) f ∈ C1([0,∞)) and f is decreasing;
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(A2) f(0) = b > 1;

(A3) tf(t) is increasing and bounded by a constant M.

When a time lag occurs in the recruitment, one can consider the difference equation with

delay xn+1 = xnf(xn−k), where k is a positive integer [15]. The general effect of time

lag on stability of steady states and population oscillations has been investigated in the

literature [20,22,29].

In this survey, we are interested in controlling the delay effect, and thus, we consider the

difference equation

xn+1 = xnf(xn−k), k = 0, 1, (1.1)

then we investigate the dynamics with the effect of harvesting or stocking. In general, forcing

a stocking or harvesting term on Eq. (1.1) leads to the equation

xn+1 = xnf(xn−k)±Hn(xn, xn−1), k = 0, 1. (1.2)

Eq. (1.1) has two equilibrium solutions, namely zero and x̄ := f−1(1). The existence of

the positive equilibrium x̄ is assured by assumption (A2) on f. Now, some of the general

questions that worth investigating in Eq. (1.2) are related to the effect of stocking, effect of

harvesting, optimal harvesting or maximum sustainable yield, persistence and the persisting

set, ordering the harvesting quotas in periodic harvesting, “best” harvesting strategy,...etc.

However, keeping Hn in its general form gives untraceable dynamics. In the sequel of this

survey, we consider special cases of Hn, summarize some of the results established in the

literature [1–5] and expose some open problems and conjectures. For each choice of Hn that

we take, we find it convenient to discuss the dynamics for k = 0 and k = 1 as separate cases.

2 Constant yield harvesting/stocking

In this section, we discuss the dynamics of Eq. (1.2) when Hn(xn, xn−1) is taken to be

constant. When the constant is negative, the strategy is known as constat catch or constant

yield strategy [8,11,26]. On the other hand, the constant is taken positive when the species

modeled by Eq. (1.1) is affected by stocking due to refuge, immigration,. . . etc [21, 28].

2.1 No time lag (k = 0)

Consider the equation

xn+1 = xnf(xn) + h, h ∈ R. (2.1)

At h = 0, we have the two equilibrium solutions x̄1,0 = 0 and x̄2,0 = f−1(1). When h is pos-

itive (stocking), x̄1,h shifts below f−1(1) while x̄2,h shifts above f−1(1). Thus, x̄1,h is beyond

our interest and we are left with the positive equilibrium x̄2,h, which is increasing in h. Using

a simple cobweb diagram, we observe that x̄2,h is globally attractive.
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When h is negative (harvesting), x̄1,h shifts upward and x̄2,h shifts downward till they

collide at a maximum harvesting level

hmax := x(f(x)− 1), 0 ≤ x ≤ f−1(1). (2.2)

A harvesting level beyond hmax leads to a total collapse of the population, while 0 < −h <

hmax assures the survival of all initial populations that are larger than or equal to the small

equilibrium x̄1,h. Again, a cobweb diagram can be used to show that (x̄1,h,∞) is the basin

of attraction of x̄2,h.

2.2 One-unit time lag (k = 1)

Consider the equation

xn+1 = xnf(xn−1)± h, (2.3)

where h is a positive parameter representing a constant stocking or harvesting quota. We

have the same equilibrium solutions as in the case k = 0; however, the dynamics becomes a

bit more challenging. At h = 0, the one-unit time lag does not change the bounded character

of solutions, but monotonic convergence changes into oscillatory convergence. Boundedness

of solutions and convergence to x̄ can be found in [23]. Also, the global stability of x̄ can

be extracted from [16], which investigates the global stability of models that encompass the

equation xn+1 = xnf(xn−1). One way to show the oscillating nature of solutions is by setting

a new coordinate system at the positive equilibrium x̄, then use the map

T0 : R+2 → R+2
defined by T0(x, y) = (y, yf(x)) (2.4)

to show that T0 rotates the quadrants of the new coordinate system clockwise [1].

Next, we proceed by taking stocking and harvesting as separate cases.

The stocking case: In this case, Eq. (2.3) becomes

xn+1 = xnf(xn−1) + h, h > 0. (2.5)

Solutions of Eq. (2.5) are bounded as we can see from the fact that xn+1 ≥ 0 and

xn+2 = xnf(xn)f(xn−1) + hf(xn) + h ≤ Mb+ hb+ h,

where M is the bound given in Assumption (A3). Moreover, the positive equilibrium x̄2,h

preserves its global attractiveness. Indeed, we can use [2,22] to extract the following result:

Lemma 2.1. Let h > 0 in Eq. (2.3). Solutions are oscillatory and

lim
n→∞

xn = x̄2,h.

3



Next, modify the map T0 in Eq. (2.4) to be Th(x, y) = (y, yf(x) + h), then Th can be

used to portray solutions of Eq. (2.3) with h > 0 as orbits in the positive quadrant. A

region Rh forms an invariance of Eq. (2.3) if Th(Rh) ⊆ Rh. It was shown in [2] that we

obtain a bounded and invariant region by connecting the points (0, 0), (0, h), (ch, bch + h),

(bch + h, bch + h), (bch + h, 0) and (0, 0), respectively with line segments, where ch is taken

to be 1
b
supt(bt+ h)f(t).

The harvesting case: In this case, we deal with the equation

xn+1 = xnf(xn−1)− h, (2.6)

where h > 0 is a parameter representing a harvesting quota. This equation was investigated

in [1], and therefore, we refer the interested reader to [1] for more elaborated details. Before

we proceed, we give a formal definition of persistence and strong persistence. A solution of

Eq. (1.2) is called persistent if the corresponding population survives indefinitely. We call a

persistent solution strongly persistent if lim inf xn > 0. A set D := {(x, y) : (x, y) ∈ R+2} is

persistent if each solution of Eq. (1.2) with (x−1, x0) ∈ D is persistent. In Eq. (2.6), we use

Dh to denote the largest persisting set at the harvesting level h. From Eq. (2.6), persistence

implies xn ≥ h
f(xn−1)

, and consequently xn ≥ h
b
. Thus, persistence implies strong persistence.

Theorem 2.1. [1] Consider Eq. (2.6), and define hmax as given in Eq. (2.2). Each of the

following holds true:

(i) Persistent solutions are bounded and strongly persistent.

(ii) If h > hmax, then Dh is empty.

(iii) If h = hmax, then all elements of Dh are attracted to x̄hmax := x̄1,h = x̄2,h.

Computer simulations show that Dh shrinks as h increases, which is in accord with the

fact provided about the basin of attraction of x̄2,h in the absence of time lag; however, a

mathematical proof is missing in case of Eq. (2.6). We formalize the observation in the

following conjecture.

Conjecture 2.1. Consider Eq. (2.6). The set Dh is decreasing in h, i.e., if h1 ≤ h2, then

Dh2 ⊆ Dh1 .

The equilibrium x̄1,h is a saddle for all 0 ≤ h ≤ hmax. At h = 0, the stable manifold

does not appear in the positive quadrant, and therefore, x̄1,h can be ignored. However, when

h > 0, the stable manifold of x̄1,h becomes in the persistent set, which makes the dynamics

of Eq. (2.6) interesting and challenging at the same time. In [1], a comparison principle was

used to show that persistent solutions are eventually larger than or equal to x̄1,h as we show

in the following three extracted results:
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Theorem 2.2. Consider Eq. (2.6), and suppose there are two sequences αn and βn such

that αn ≤ xn ≤ βn for all n ≥ −1. Define fn+1(x) = F (x, αn) and gn+1(x) = F (x, βn), then

we obtain

gngn−1 · · · g0(x0) ≤ xn+1 ≤ fnfn−1 · · · f0(x0).

Theorem 2.3. Consider the orbit of t0 :=
b
h
in the equation tn+1 =

(tn+h)
f(tn)

, then tn monotonic

and converges to x̄1,h. Furthermore, any persistent solution {xn}∞−1 of Eq. (2.6) satisfies

xn ≥ tn for all n ∈ N.

Theorem 2.4. A persistent solution {xn}∞n=−1 of Eq. (2.6) satisfies

x̄1,h ≤ lim inf xn ≤ lim sup xn ≤ x∗
2,h,

where x∗
2,h is the largest fixed point of the function g(t) = h

f(t) + 1

f(t)f(x̄1,h)− 1
in the interval[

0, f−1 (1/f(x̄1,h))
)
.

We can force harvesting on Pielou’s equation [14, 24] and use it as a “toy model” to

represent Eq. (2.6). Indeed, we have

yn+1 =
Kµyn

K + (µ− 1)yn−1

− h∗, µ > 1, K > 0, h∗ > 0. (2.7)

Let xn−1 :=
(µ−1)
K

yn−1, h := (µ−1)
K

h∗ and b := µ, we obtain

xn+1 =
bxn

1 + xn−1

− h, b > 1, h > 0. (2.8)

Thus b
1+t

= f(t) in Eq. (2.6). The dynamics of Eq. (2.8) was investigated in [1]. Nev-

ertheless, we extract the following facts and provide some questions that worth further

investigation.

At h = 1 and b ≥ 4, Eq. (2.8) is related to Lyness equation [9, 10, 13] and has the

invariants

Ib(x, y) :=

(
1 +

b

1 + x

)(
1 +

b

1 + y

)
(1 + x+ y) = Ib(x−1, x0). (2.9)

In this case, the persistence set D1 can be found explicitly. Indeed, (x, y) ∈ D1 if and only if

2 + (b+ 1)2 − x̄2(b− 4) ≤ Ib(x, y) ≤ 2 + (b+ 1)2 − x̄1(b− 4).

When h = 1 and b > 2(1 +
√
2), an 8-periodic solution of Eq. (2.8) was found and used to

define a trapping region for Eq. (2.8) with 0 < h < 1. Now, we pose the following problems:

Conjecture 2.2. Consider Eq. (2.8) with 0 < h < 1. All persistent solutions larger than

x̄1,h are attracted to x̄2,h.

Open Problem 2.1. Consider Eq. (2.8) with 0 < h < 1. Show that D1 ⊆ Dh.

Open Problem 2.2. Consider Eq. (2.8) with h > 1. Characterize Dh. Is Dh closed? Is Dh

connected?
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3 Periodic Harvesting/stocking

Harvesting or stocking can be controlled or regulated to prevent species extinction or to

improve the total yield over a period of time. However, the question how to regulate har-

vesting/stocking is widely open for research and debate [8, 11, 27, 31]. De Klerk and Gatto

considered a continuous multi-cohort Beverton-Holt model [12] and argued that adopting a

periodic fishing strategy instead of a constant effort strategy is worthwhile when there is a

significant economy of scale, and when older fish are much more valuable than younger ones.

AlSharawi and Rhouma considered the discrete Beverton-Holt model [3] and investigated

the dynamics of the model with the effect of several harvesting strategies. The chart given

in the conclusion of [3] gives a theoretical suggestion for considering each strategy.

In this section, we force periodic stocking/harvesting on Eq. (1.1), then discuss the

dynamics when k = 0 and k = 1. The next result shows that population cycles evolve under

periodic stocking/harvesting and become multiples of the stocking/harvesting period.

Theorem 3.1. [2] If there exists a r-periodic solution of the p-periodic difference equation

xn+1 = F (xn, xn−1, . . . , xn−k)± hn, hn+p = hn,

then r is a multiple of p.

3.1 No time lag (k = 0)

Consider the p-periodic equation

xn+1 = xnf(xn)± hn, hn ≥ 0, (3.1)

where {hn} is a p-periodic sequence representing periodic stocking or harvesting. Although

it is possible not to have stocking in some seasons (hj = 0 for some j), we want to avoid

reducing Eq. (3.2) to xn+1 = xnf(xn), and therefore, we assume
∑

hn > 0.

The stocking case: In this case, Eq. (3.1) becomes

xn+1 = xnf(xn) + hn, (3.2)

where hn ≥ 0 and hn+p = hn for all n ∈ N. Define the maps gn(x) = xf(x)+hn. Since each gn
is an upward shift of xf(x), the period of any periodic solution has to be a multiple of p [2,4].

Define the p-fold functions Fj := gp+j−1 ◦ gp+j−2 ◦ · · · gj, then for each j = 0, 1, . . . , p− 1, Fj

is increasing and bounded with Fj(0) > 0. Thus, Fj has a unique positive fixed point, say

x̄j,hn . Furthermore,

lim
n→∞

xnp+j = x̄j,hn .
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Now, {x̄0,hn , x̄1,hn , · · · , x̄p−1,hn} is a p-periodic solution of Eq. (3.2), which is a global attrac-

tor. Let {hn} be a p-periodic sequence of stocking quotas. Define

hav :=
1

p

p−1∑
j=0

hj.

Now, sum Eq. (??) over the periodic attractor to obtain

p−1∑
j=0

x̄j =

(
p−1∑
j=0

x̄jf(x̄j) + hj

)
.

If y = tf(t) is concave, then we can use Jensen’s inequality to conclude that

x̄av ≤ x̄avf(x̄av) + hav.

Thus, x̄av ≤ x̄2,hav , where x2,hav is the globally stable equilibrium at a constant stocking

level h = hav. In this case, populations attenuate under periodic stocking. However, a more

ambiguous notion that needs deep investigation is the following: How does the order of the

stocking quotas affect the population average? We formulate this question in the following

open problem:

Open Problem 3.1. Let {hn} be a p-periodic sequence of stocking quotas, and let {ĥn} be a

permutation of {hn}. Define xav and x̂av to be the average of the global attractors associated

with {hn} and {ĥn}, respectively. How does xav relate to x̂av?

The harvesting case: In this case, Eq. (3.1) becomes

xn+1 = xnf(xn)− hn, (3.3)

where hn ≥ 0,
∑

hj > 0 and hn+p = hn for all n ∈ N. Obviously, sufficiently large values

of hn lead to a total collapse in the population. Thus, finding a maximum sustainable yield

(MSY) is an issue of particular interest here. The MSY can be found from the following

constraints

Fj(x) = x and F ′
j(x) = 1 (3.4)

for all j = 0, 1, . . . , p−1. As an illustrative example, we discuss the Beverton-Holt model [7].

Example 3.1. Consider the Beverton-Holt model with 2-periodic harvesting given by

xn+1 =
Kµxn

K + (µ− 1)xn

− hn, (3.5)

where hn+2 = hn for all n ∈ N and h0, h1 > 0.
Based on the constraints in Eqs. (3.4), we can eliminate x and obtain a relationship

between h0 and h1. Indeed, we obtain

K2 −Kβ(h0 + h1) + h0h1 = 0, β =
µ+ 1

µ− 1
,
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x

y

f0(x)

f1(x)

f0(f1(x))

f1(f0(x))

x̄0

x̄1

Figure 1: This figure shows the curves of f0(x), f1(x), f1(f0(x)) and f0(f1(x)) together with

the 2-cycle {x̄0, x̄1}. The parameters are fixed as K = 4, µ = 9, h0 = 1 and h1 =
11
4
.

or equivalently

h1 =
K(K − βh0)

Kβ − h0

, h0 <
K

β
.

We use the relationship between h0 and h1 to find

x̄0 =
K(K + h0)

K(µ+ 1)− h0(µ− 1)
and x̄1 =

1

2
(K − h0).

At h0 =
(
√
µ−1)

√
µ+1

K, we obtain h0 = h1 and x̄0 = x̄1, which is the constant harvesting case.

Observe that a swap of h0 and h1 leads to a swap of x̄0 and x̄1, which seems to be of little

mathematical effect, but in fact, it has a dramatic effect on low level populations. When

h0 < h1, we have x̄0 < x̄1 and populations in [x̄0,∞) persist. On the other hand, h0 > h1

implies x̄0 > x̄1 and [x̄0,∞) is the persistent set. Therefore, one can investigate the advantage

of having 0 ≤ h0 ≤ h1 ≤ hmax at all times. See Figure 1 for an illustration.

The facts discussed in Example 3.1 motivate investigating the following open problems.

We use D(h0, h1, . . . , hp−1) to denote the persistent set of Eq. (3.5).

Open Problem 3.2. Let {hn} be a p-periodic sequence of harvesting quotas in Eq. (3.5) that

give a nonempty persistent set D(h0, h1, . . . , hp−1). Let {ĥn} be a permutation of {hn}. Define
xav and x̂av to be the average of the attractors associated with {hn} and {ĥn}, respectively.
How does xav relate to x̂av?
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Open Problem 3.3. Let {hn} be a fixed p-periodic sequence of harvesting quotas that give

a nonempty persistent set D(h0, h1, . . . , hp−1). Which permutation of {hn} gives the largest

persistent set?

Open Problem 3.4. What happens to the invariants given in Eq. (2.9) when hn = 1± ϵn.?

3.2 One-unit time lag (k = 1)

Here, we have the p-periodic difference equation with delay

xn+1 = xnf(xn−1)± hn, hn+p = hn. (3.6)

The stocking case: Consider the equation

xn+1 = xnf(xn−1) + hn, (3.7)

where hn ≥ 0 is a p-periodic sequence representing stocking quotas (
∑

hj > 0). Eq. (3.7) was

investigated by the author in [2]. Define the two dimensional maps Tj(x, y) = (y, yf(x)+hj),

then the iterates of the p-periodic sequence of maps Tj : j = 0, 1, . . . , p − 1 portray the

dynamics of Eq. (3.7) in the positive quadrant. As in the paragraph proceeding Lemma 2.1,

we define the region Rhj
for each individual map Tj to obtain a compact invariant for each

map Tj. However, we need a compact invariant for the p-fold map T = Tp−1 ◦ Tp−2 ◦ · · · ◦ T0.

It was shown in [2] that hi ≤ hj implies Rhi
⊆ Rhj

, which suggests defining one invariant for

all maps Tj. Indeed, consider hm := maxj{hj, j = 0, 1, . . . , p− 1} and

cm := max
j

{1
b
sup
t≥0

(bt+ hj)f(t) : j = 0, 1, . . . , p− 1},

then use hm and cm to define a region Rhm as in the paragraph proceeding Lemma 2.1.

The region Rhm is a compact invariant for each map Tj, and consequently it is a compact

invariant for the p-fold map T. Using Brouwer Fixed-Point Theorem, T has a fixed point in

Rhm . Based on Theorem 3.1, we obtain a p-periodic solution of Eq. (3.7). Now, the following

theorem summarizes the main result obtained in [2].

Theorem 3.2. The p-periodic difference equation in Eq. (3.7) has a p-periodic solution.

Furthermore, the p-periodic solution is globally attracting when p = 2.

Conjecture 3.1. The p-periodic solution of Eq. (3.7) obtained in Theorem 3.2 is globally

attracting for all p > 2.

Finally, after verifying this conjecture, then Problem 3.1 can be investigated for Eq. (3.7).

The harvesting case: In this case, Eq. (3.6) takes the form

xn+1 = xnf(xn−1)− hn, hn ≥ 0. (3.8)
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To the best of my knowledge, Eq. (3.8) has not been studied yet. Define

hmin = min{h0, h1, . . . , hp−1}.

As in Theorem 2.1, because

xn+2 = xnf(xn)f(xn−1)− hnf(xn)− hn+1 ≤ Mb− hmin(b+ 1)

and persistent solutions satisfy xn ≥ hmin

b
, then persistent solutions are bounded and strongly

persistent. Furthermore, we give the following:

Proposition 3.1. Consider hmax as defined in Eq. (2.2). If hn > hmax for all n =

0, 1, . . . , p− 1, then the persistent set of Eq. (3.8) is empty.

Proof. Start with (x−1, x0) such that x−1 ≥ x0, then x1 = x0f(x−1)−h0 < x0f(x0)−h0 < x0.

By induction, we obtain a decreasing and bounded sequence that must converge to a value

say α. For j = 0, 1, . . . , p− 1, we have

xnp+j = xnp+j−1f(xnp+j−2)− hj−1,

which implies α is a fixed point of this equation. Since hj−1 > hmax, we obtain a contradiction.

Next, start with (x−1, x0) such that x−1 < x0, then either we obtain a monotonic sequence

which leads us to a contradiction, or we obtain xm−1 ≥ xm for some fixed m and we use the

first case to obtain a contradiction.

Open Problem 3.5. Investigate the dynamics of Eq. (3.8).
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